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of the medial meniscus, knockout of 
Ptger4 promoted regeneration  
of stable, mature articular cartilage 
and reduced joint pain compared 
with control mice without Ptger4 
deletion.

The EP4 antagonist HL-43 was 
identified by screens for the most 
effective 1H-1,2,3-triazole-based 
small-molecule inhibitor of PGE2- 
induced osteoclast differentiation 
and IL-1β-mediated changes in 
chondrocyte gene expression. In the 
murine models, HL-43 treatment  
had similar effects to Ptger4 knock-
out. “HL-43 had the best efficacy  
of the screened compounds on 
articu lar cartilage regeneration  
and lower toxicity than FDA- 
approved NSAIDs celecoxib and 
grapiprant,” explains Jian Luo, corres-
ponding author on both studies. 
“The work of setting up clinical  
trials testing HL-43 in OA treatment 
is ongoing.”

Robert Phillips

Original articles Jiang, W. et al. PGE2 
activates EP4 in subchondral bone osteoclasts  
to regulate osteoarthritis. Bone Res. 10, 27 (2022) | 
Jin, Y. et al. A novel prostaglandin E receptor 4 
(EP4) small molecule antagonist induces articular 
cartilage regeneration. Cell Discov. 8, 24 (2022)

knockout of 
Ptger4 pro-
moted regen-
eration of 
stable, mature 
articular  
cartilage

In newly published results from 
two related studies, prostaglandin 
E2 (PGE2) and its receptor EP4 were 
associated with both osteoclast 
activity in osteoarthritis (OA) pro-
gression and tissue degeneration in 
cartilage injury. In both studies, the 
EP4 antagonist HL-43 inhibited these 
pathological activities and reduced 
associated pain in murine models, 
suggesting HL-43 has therapeutic 
potential in OA.

OA is characterized by pain, 
articular cartilage degeneration, 
osteophyte growth and subchondral 
sclerosis. PGE2 is associated with OA 
pathology, but although NSAIDS 
(which affect production of PGE2 and 
other prostanoids) offer symptomatic 
relief in OA, they can also have severe 
adverse effects.

In the new studies, EP4 expres-
sion was higher in injured articular 
cartilage and in subchondral bone 
in samples from patients with OA 

undergoing total knee replacement 
than in uninjured OA cartilage and 
subchondral bone from patients 
without OA. In both studies, 
tissue-specific deletion of Ptger4, 
which encodes EP4, improved 
OA-associated pathology in 
murine models. 
Knockout of 
Ptger4 in osteo-
clasts reduced 
disease progres-
sion and osteo-
phyte formation, 
as well as pain, in 
a mouse anterior 
cruciate ligament 
transection 
model of OA. 
Similarly, in mice 
with cartilage 
defects induced 
by microfracture 
surgery or  
destabilization  
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PGE2 receptor antagonist has 
potential to t re at o st eoarthritis
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the research-
ers propose 
to name the 
… syndrome
NEMO deleted 
exon 5 auto-
inflammatory 
syndrome 
(NDAS)

loss-of-function mutations in IKBKG, 
encoding NF-κB essential modulator 
(Nemo), typically cause an immuno-
deficiency syndrome. However, new 
research reveals that mutations that 
mediate alternative mRNA splicing of 
IKBKG lead to an inflammatory disease 
phenotype that does not seem to be 
associated with increased suscepti-
bility to viral or bacterial infection. 
As the Nemo isoform overexpressed 
by patients with this phenotype lacks 
the domain encoded by exon 5, the 
researchers propose to name the newly 
discovered syndrome Nemo deleted 
exon 5 autoinflammatory syndrome 
(NDAS).

The discovery arose from studies of 
three unrelated male patients with a 
similar severe, early onset inflammatory 
disease, the features of which suggested 
an underlying defect in Nemo. Genetic 
studies using several different testing 
modalities determined that the patients 

had de novo mutations that led to 
production of the same Nemo isoform, 
termed Nemo-∆ex5. expression of 
the Nemo-∆ex5 isoform in cells from 
patients with NDAS was associated with 
activation of NF-κB response genes.

In vitro, expression of NEMO-∆ex5  
in dermal fibroblasts was associated  
with dampened antiviral responses, 
whereas in immune cells such as T cells 

and macrophages it led to increased 
NF-κB activation and type I interferon 
production, as well as resistance to  
viral infection.

Further investigations revealed 
that NEMO-∆ex5 enhances NF-κB 
signalling in immune cells by forming a 
complex with and stabilizing inducible 
IκB kinase (IKK)-related kinase IKKi.  
In dermal fibroblasts from patients  
with NDAS, stimulation with TNF was 
able to induce IKKi protein expression 
and rescue type I interferon production. 
The findings suggest a mechanism by 
which TNF blockade, which has some 
efficacy in patients with NDAS, might 
reduce NF-κB activity and inflammatory 
disease.

“Characterization of the Nemo iso-
form expressed in [patients with NDAS] 
has taught us more about how type I 
interferon and antiviral immunity and 
the pro-inflammatory NF-κB pathway 
may be fine-tuned or regulated,” reports 
corresponding author eric Hanson.

Sarah Onuora

 a U tO i n F l a M M atO rY  D i s e a s e s

NEMO splice variant causes distinct 
autoinflammatory syndrome

Original article Lee, Y. et al. Genetically 
programmed alternative splicing of NEMO 
mediates an autoinflammatory disease phenotype. 
J. Clin. Invest. 132, e128808 (2022)

Credit: Alex Whitworth/Springer Nature Limited
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Three distinct 
OA subtypes 
(clusters) were 
identified, 
reflecting 
 differences in 
their underly-
ing biology

Despite much research, progress in 
developing disease- modifying drugs 
for osteoarthritis (OA) has been slow, 
owing in part to the heterogeneity of 
the disease. In a new study, Angelini 
et al. used a machine learning 
approach to stratify patients with OA 
into distinct subsets that correspond 
to their underlying pathophysiology, 
with potential implications for 
individualized treatments that target 
specific disease mechanisms.

The authors studied 297 patients 
with knee OA. At baseline, serum and 
urine samples were collected for the 
analysis of 16 biochemical markers, 
each reflecting different aspects of 
joint tissue turnover and OA patho-
logy. A machine learning approach 
was used to identify subgroups of 
patients based on these biochemical 
data. Moreover, to identify clinically 
meaningful differences between 
subgroups, a variety of clinical assess-
ments, physical examinations and 
questionnaires were collected.

Three distinct OA subtypes  
(clusters) were identified, reflecting 
differences in their underlying biol-
ogy: a low tissue turnover sub type,  
a structural damage subtype and a  
systemic inflammation subtype. 
Replication of the cluster ing analysis 
on a distinct OA cohort, based on 
a common set of 11 biomarkers, 
confirmed the presence of these three 
subtypes. As well as biochemical 
data, clinical scores differed between 
each cluster when analysing 2- year 
follow- up data. The low tissue turn-
over cluster had the highest propor-
tion of patients with non- progressive  
symptomology, whereas the struc-
tural damage cluster had the highest 
proportion of structural progressors, 
and the inflammatory cluster had 
the highest proportion of patients 
with sustained or progressive pain. 
Thus, stratification of patients with 
OA based on baseline biochemical 
clustering could be used to predict 
disease progression.

 O s t e Oa rt H r i t i s

Identifying OA subgroups based 
on biochemical data

These findings support the 
existence of distinct OA subtypes and 
emphasize the need to move away 
from the one- size- fits- all treatment 
approach that is often used in clinical 
trials. “With pre cisely defined disease 
phenotypes, future clinical trials may 
be able to define more refined inclu-
sion and exclusion criteria, leading to 
a more effective evaluation of poten-
tial OA treatments”, explains Jaume 
Bacardit, corresponding author of 
the study.

Michael Attwaters

Original article Angelini, F. et al. 
Osteoarthritis endotype discovery via clustering 
of biochemical marker data. Ann. Rheum. Dis. 
https://doi.org/10.1136/annrheumdis-2021- 
221763 (2022)

Credit: Alex Whitworth/Springer Nature Limited

in individuals with only one type of 
autoantibody (oR = 2.4; 95% CI 2.0–2.8) 
and lowest in individuals with neither 
 autoantibody (oR = 1.5; 95% CI 1.4–1.7).

A pathogenic mechanism linking 
C4A deficiency with impaired removal 
of immune complexes in SAID was 
suggested by the results of in vitro 
experiments in which deposition of C4b 
on aggregated IgG was greater with 
serum from C4A-only carriers than from 
C4B-only carriers. A lack of C4b binding 
could prevent removal of immune  
complexes, leading to autoantibody 
generation and SAID development.

“The presence of anti-SSA/Ro or 
anti-SSB/la autoantibodies may be a 
common mediator of disease in a sub-
group of patients,” notes the first author 
of the study, Christian lundtoft. lars 
Rönnblom, the corresponding author, 
adds “genetic profiling of patients  
may be important when classifying  
and stratifying them for a more  
individualized treatment.”

Robert Phillips

Original article Lundtoft, C. et al. 
Complement C4 copy number variation is linked 
to SSA/Ro and SSB/La autoantibodies in systemic 
inflammatory autoimmune diseases. Arthritis 
Rheumatol. https://doi.org/10.1002/art.42122 (2022)

A lack of 
C4b binding 
could prevent 
removal of 
immune 
complexes
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New research demonstrates that the 
presence or absence of anti-SSA/Ro 
and/or anti-SSB/la autoantibodies 
greatly influences the relationship 
between complement-component  
gene C4A copy number and the likeli-
hood of having a systemic autoimmune 
inflammatory disease (SAID).

Deficiencies in components of the 
classic complement pathway, such as 
C4, are known to be associated with  
the occurrence of systemic lupus  
erythematosus (Sle). C4 is encoded  
by two genes, C4A and C4B, which 
demonstrate considerable copy-number 
variation. C4A and C4B are located 
between the HLA class I and class II 
regions on chromosome 6, and linkage 
disequilibrium has made it difficult  
to determine which of these genetic  
elements is associated with the  
presence of SAIDs.

In the new study, low (≤1) C4A copy 
number was more common among 

patients with Sle, primary Sjögren  
syndrome or myositis (n = 2,290) than 
among healthy individuals (n = 1,251).  
The  pattern of C4A copy number  
was similar  in each of the three SAIDs.  
C4A copy number in patients with SAIDs 
was inversely associated with the pres-
ence of anti-SSA/Ro and anti-SSB/la 
autoantibodies. Furthermore, for each 
decrease in C4A copy number, the addi-
tional risk of having an SAID was highest 
in indivi d uals with both autoantibodies 
(oR = 5.9; 95% CI 4.8–7.2), intermediate 
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C4A copy number is associated with 
autoimmune disease
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It is now well accepted that most patients 
with rheumatic and musculoskeletal diseases 
(RMDs) have an increased cardiovascular 
risk. This risk is related to both the burden 
of traditional cardiovascular risk factors and 
additional RMD- related factors, particularly 
chronic inflammation. New EULAR recom-
mendations for the management of cardio-
vascular risk in RMDs aim to guide clinicians 
regarding the management of these impor-
tant co- morbidities while also highlight-
ing the many gaps in evidence and need for 
further research1. Although they provide 
much- needed practical recommendations, we 
believe the implementation of these recom-
mendations in the ‘real world’ merits further 
discussion and highlights the need to enhance 
interdisciplinary cardio- rheumatology care to 
optimize the management of cardiovascular 
risk in RMDs.

The new guidelines are an important 
addition to previous EULAR recommenda-
tions, which focused on cardiovascular risk 
manage ment in patients with inflammatory 
joint disorders2. The current article focuses, 
for the first time, on a large number of RMDs 
that have not been addressed in previous 
publi cations, such as gout, vasculitis and 
systemic autoimmune rheumatic diseases 
including systemic lupus erythematosus (SLE) 
and anti- phospholipid syndrome (APS). In 
addition to several overarching principles, the 
guidelines discuss RMD- specific approaches 
to cardiovascular risk stratification, manage-
ment of traditional modifiable cardiovascular 
risk factors, and considerations regarding the 

models for coordinated cardiovascular risk 
management in patients with RMD. A suc-
cessful example of such shared care includes 
the co- management of psoriatic arthritis by 
rheumatologists and dermatologists and the 
establishment of dermatology–rheumatology 
care models7. An approach to shared care that 
involves rheumatologists, primary care physi-
cians and preventive cardiologists could be an 
important step for optimizing cardiovascular 
risk management in RMD8 (Fig. 1).

EULAR recommends that on the basis of 
current (and lack of) evidence, the corner-
stone of cardiovascular risk reduction in 
RMD should be similar to that for the gene-
ral population1. This approach relies on the 
identification of patients who are at high 
cardiovascular risk by use of established risk 
scores developed and validated in the general 
population. The guidelines recognize the sub-
optimal performance of such risk scores when 
applied to patients with some RMDs, leading 
to underestimation of cardiovascular risk in 
these populations. Hence, EULAR recom-
mends considering the use of disease- specific 
risk prediction models or consideration of 
disease- specific risk factors for risk stratifica-
tion in patients with SLE, ANCA- associated 
vasculitis or APS. However, the low level of 
evidence regarding cardiovascular risk stratifi-
cation, in particular the lack of external vali-
dation of these specific prediction approaches, 
precludes the endorsement of any particular 
disease- specific risk- prediction equations. 
Furthermore, owing to lack of data, the guide-
lines suggest using the same cardiovascular risk 
scores as for the general population in patients 
with the other RMDs covered by the recom-
mendations. This guidance is in contrast to the 
prior EULAR recommendation to apply a 1.5 
multiplication factor to improve cardiovascular 
risk stratification in rheumatoid arthritis2.

Regardless of the selected approach to risk 
stratification, regular screening for cardio-
vascular risk factors and tailoring treatment 
on the basis of estimated cardiovascular risk 
remain critical to all approaches to primary 
prevention of cardiovascular events in RMDs. 
Patients should undergo regular measurement 
of blood pressure, lipid and glucose profiles, 
and evaluation of lifestyle factors for input into 
a risk- prediction calculator to estimate cardio-
vascular risk. Additionally, knowledge of local 
guidelines for management of hypertension, 
dyslipidemia and diabetes mellitus is needed to 

use of immune- modulating therapies from a 
cardiovascular standpoint.

One of the main questions that arises when 
discussing such recommendations is who 
should be responsible for the regular surveil-
lance of cardiovascular risk and interventions 
for optimization of traditional cardiovascular 
risk factors in patients with RMD? An over-
arching principle of the recommendations 
states that “rheumatologists are responsible 
for [cardiovascular risk] assessment and man-
agement in collaboration with primary care 
providers, internists or cardiologists…”1. This 
statement clearly puts the rheumatologist at 
the center of cardiovascular preventive care, 
which has some limitations when translated 
to the real- world clinical environment and 
calls for some re- thinking and flexi bility 
of this approach. Substantial gaps in the 
manage ment of cardiovascular risk remain 
a major problem despite an increased aware-
ness of this problem among rheumatologists; 
a persistently high proportion of patients 
remain underdiagnosed and undertreated for 
hypertension and dyslipidemia, two impor-
tant modifiable risk factors3,4. Studies that 
attempted to identify barriers to cardiovascu-
lar risk management among rheumatologists 
and primary care physicians indicated lack of 
time, lack of knowledge of current guidelines 
for cardiovascular risk factors, and lack of care 
coordination as some of the main reasons5,6. 
Inter- disciplinary collaborations and shared 
models of care have been developed to better 
manage patients with complex medical condi-
tions and could provide insight into effective 
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Cardio- rheumatology: it’s time 
to collaborate
Lihi Eder    and Paula Harvey

New EULAR recommendations offer useful guidance for improving  
cardiovascular health in patients with rheumatic and musculoskeletal 
 disease. However, an interdisciplinary model of care is crucial to the  
optimal  management of cardiovascular risk in these patients.

Refers to Drosos G. C. et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculo-
skeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. https://
doi.org/10.1136/annrheumdis-2021-221733 (2022).
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Fig. 1 | Cardio-rheumatology: a new model of shared care. Optimal management of cardiovascular (CV) risk in patients with rheumatic and  
musculoskeletal diseases requires collaboration and coordination of care between rheumatologists, primary care physicians and cardiologists.

• Perform CV risk stratification

• Implement lifestyle and 
   pharmacologic interventions 
   for CV risk factor modification

• Treat CV risk factors to target
   and/or refer more complex cases 
   to relevant specialty service

Screen for traditional CV risk factors

Educate
patients

Primary care

Rheumatology

Cardiology

• Advanced CV risk stratification using 
    imaging and laboratory tests

• Optimize control of hypertension and 
   dyslipidemia

• Investigate and manage cardiac-related 
   symptoms 

• Optimize control of RMD activity

• Minimize use of corticosteroids 
    and NSAIDs

• Consider CV risk in selection of 
    immune-modulating therapies

• Recommend lifestyle interventions 
    to modify CV risk

• Optional: CV risk stratification, 
    manage hypertension and 
    dyslipidemia

recognize thresholds and targets for tailoring 
treatment according to the calcu lated cardio-
vascular risk. These tasks might be beyond the 
scope of practice of the typical rheumatologist.

Conversely, the EULAR recommendations1 
highlight several issues regarding cardiovas-
cular risk prevention that clearly fall within 
the scope of practice of all rheumatologists. 
Achieving optimal control of rheumatic dis-
ease activity is an important treatment goal 
from a cardiovascular standpoint, as studies 
have found an association between various 
measures of disease activity and cardio vascular 
risk9. Titration of urate- lowering therapy to 
reach specific targets in gout, prioritizing the 
use of hydroxycholoquine in SLE, and mini-
mizing the use of corticosteroids in various 
RMDs are some specific recommendations that 
rheumatologists could adopt to reduce cardio-
vascular risk in their patients. The EULAR  
recommendations also recognize the general 
lack of knowledge to guide selection of specific 
immune- modulating therapies when consi-
dering cardiovascular risk reduction1, although 
research is being undertaken in this field10. 
These considerations are beyond the scope 
of practice of primary care physicians and 
cardio logists and highlight the important role 
of rheumatologists in tailoring treatment of 
RMD to improve the overall health of patients, 
including  cardiovascular disease.

In summary, the new EULAR recom-
mendations are an important step towards 
improving awareness and optimizing screen-
ing, evaluation and management of cardiovas-
cular risk in patients with RMD. Important 
gaps in knowledge still exist regarding the 
approach to risk stratification, treatment 
targets for modifiable risk factors and the 
selection of immune- modulating therapies. 
In addition, these gaps signal the need for 
enhanced collaboration and coordination of 
care between rheumatologists, primary care 
physicians and cardiologists. Establishment 
of cardio- rheumatology models of care  
(see Fig. 1) whereby responsibilities are shared 
and coordinated between different specialties 
could improve adherence to current treatment 
recommendations. Such programmes could 
also increase awareness and knowledge across 
specialties and trigger collaborative research 
efforts to inform future guidelines.
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Inflammatory rheumatic and musculoskeletal diseases 
(RMDs), such as rheumatoid arthritis (RA) and spondy-
loarthritis (SpA; including ankylosing spondylitis (AS) 
and psoriatic arthritis (PsA)), as well as other arthriti-
des, have been associated with both generalized osteo-
porosis and fragility fractures, as well as with localized 
inflammatory bone resorption (erosions) and/or patho-
logical bone formation1–7. Targeted therapies, including 
biologic DMARDs (bDMARDs) and targeted synthetic 
DMARDs (such as Janus kinase (JAK) inhibitors), not 
only inhibit localized bone resorption and formation but 
might also slow down generalized bone loss and inhibit 
the development of fragility fractures in patients with 
these diseases1,3–5,8–11. Systemic inflammation involv-
ing inflammatory cells and mediators is a main cause 
of arthritis-associated inflammatory bone resorption 
and formation1–4. Therefore, in addition to their possi-
ble direct effects on bone, targeted therapies for RMDs 
might indirectly halt bone loss by dampening inflamma-
tion in RA3,12. However, the effects of targeted therapies 
on bone formation in axial SpA (axSpA) are rather more 
controversial8,9,13,14.

In this Review, we briefly introduce the cellular 
and molecular factors involved in inflammatory bone 

resorption and formation, and then discuss the effects 
of targeted therapies on laboratory biomarkers of bone 
metabolism as well as on bone density. Finally, we pres-
ent data on the clinical effects of targeted therapies on 
osteoporosis and fragility fractures in arthritides. The 
main goal of this Review is to present the most important 
mechanisms involved in pathological bone metabolism 
underlying RA and SpA. In addition, we discuss which 
targeted therapies might be suitable for normalizing  
pathological bone turnover in these RMDs.

Bone metabolism in inflammatory RMDs
Receptor activator of nuclear factor-κB (RANK), its 
ligand (RANKL) and osteoprotegerin are impor-
tant mediators of bone turnover in the context of 
inflammation12,15. The pro-inflammatory cytokines 
TNF, IL-1β, IL-6, IL-17 and IL-23 are involved in 
RANKL-dependent osteoclastogenesis, osteoclast dif-
ferentiation and activation2,3,12,16 (Fig. 1). Among these 
cytokines, TNF has an exceptional role as it directly 
induces osteoclast function, indirectly enhances osteo-
clastogenesis via RANKL and stimulates RANKL expres-
sion by osteoblasts, T cells and B cells12,17. Inhibition of 
TNF results in increased osteoprotegerin and decreased 

Effects of targeted therapies on bone 
in rheumatic and musculoskeletal 
diseases
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Harjit P. Bhattoa  5,6 and Zoltán Szekanecz  1,6 ✉

Abstract | Generalized bone loss (osteoporosis) and fragility fractures can occur in rheumatic and 
musculoskeletal diseases including rheumatoid arthritis and spondyloarthritis (SpA; including 
ankylosing spondylitis and psoriatic arthritis). In addition, rheumatoid arthritis can involve 
localized, periarticular bone erosion and, in SpA, local (pathological) bone formation can occur. 
The RANK–RANKL–osteoprotegerin axis and the Wnt–β-catenin signalling pathway (along with its 
inhibitors sclerostin and Dickkopf 1) have been implicated in inflammatory bone loss and forma-
tion, respectively. Targeted therapies including biologic DMARDs and Janus kinase (JAK) inhib-
itors can stabilize bone turnover and inhibit radiographic joint damage, and potentially also 
prevent generalized bone loss. Targeted therapies interfere at various points in the mechanisms 
of local and generalized bone changes in systemic rheumatic diseases, and they effect biomark-
ers of bone resorption and formation, bone mass and risk of fragility fractures. Studies on the 
effects of targeted therapies on rates of fragility fracture are scarce. The efficacy of biologic 
DMARDs for arresting bone formation in axial SpA is debated. Improved understanding of the 
most relevant therapeutic targets and identification of important targeted therapies could lead 
to the preservation of bone in inflammatory rheumatic and musculoskeletal diseases.
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RANKL expression in RMDs18,19. The IL-17–IL-23 
axis has also been implicated in osteoclastogenesis and 
inflammatory bone erosion16,20–22. Anti-IL-6 receptor 
treatment also exerts inhibitory effects on osteoclasts, 
underscoring the role of IL-6 in bone resorption23. In 
addition, multiple JAK–signal transducer and acti-
vator of transcription (STAT) pathways have been 
implicated in RANKL-dependent inflammatory bone 
destruction24,25. Moreover, JAK inhibition might ame-
liorate pathological bone loss and increase bone mass 
by stimulating osteoblast function26 (Fig. 1). Preclinical 
studies revealed that tofacitinib and baricitinib atten-
uated RANKL-dependent osteoclast activation24,25 and 
exerted bone-preserving effects in animal models26–28. 
Under conditions of hypoxia, tofacitinib promoted bone 
formation from mesenchymal stem cells27.

In addition to the role of immune cells and inflam-
matory mediators in bone destruction, the possibility 
of autoantibody-mediated, inflammation-independent 
bone loss has also been postulated in RA29,30. Bone 
destruction mediated directly by anti-citrullinated pro-
tein antibodies (ACPAs) or rheumatoid factor could 
precede the development of inflammation and might 
contribute to the early development of bony erosions29 
(Fig. 1). ACPAs can directly activate osteoclasts by various 
mechanisms including the stimulation of TNF produc-
tion, synovial fibroblast migration and subsequent oste-
oclast differentiation31,32. ACPA seropositivity has been 
associated with impaired bone strength and increased 
risk of fragility fractures in RA33, suggesting that auto-
immunity is involved in generalized, as well as localized, 
bone loss in arthritis.

Wnt proteins, as well as other proteins associated 
with the canonical Wnt–β catenin signalling pathway, 
are important regulators of bone formation in the con-
text of inflammation, especially in SpA34. Dickkopf 1 
(DKK1) and sclerostin are important inhibitors of the 
Wnt axis and thus promote bone loss34–36. Sclerostin (an 
osteocyte-specific protein) also stimulates bone resorp-
tion through an autologous effect on osteocyte RANKL 
production37. Production of DKK1 is increased in RA38,39; 
however, a meta-analysis did not find increased scleros-
tin production in this disease40. One explanation of the 
latter phenomenon might be that although osteo cytes 
produce high levels of sclerostin, the increased death rate 
of these cells could result in the absence of high scle-
rostin concentrations in active RA41. The interaction 

between DKK1 and sclerostin could have an addi-
tive effect, as DKK1 blockade resulted in inhibition of 
sclerostin production42.

Among the pro-inflammatory cytokines impli-
cated in pathological bone metabolism, TNF stimu-
lates DKK1 production and consequently inhibits the 
canonical Wnt signalling pathway12,35. The effects of 
IL-6 on Wnt-dependent bone formation are somewhat 
controversial43–45. On the one hand, in contrast to TNF, 
IL-6 inhibits DKK1 expression by synovial fibroblasts43. 
On the other hand, IL-6 blockade has been associated 
with decreased DKK1 production in RA46, suggesting 
that IL-6 might induce DKK1 expression12. The regula-
tion of DKK1 and other members of the canonical Wnt 
signalling axis by IL-6 needs further clarification.

The Wnt–DKK1–SOST system and its regulation 
by TNF and other pro-inflammatory cytokines have a 
peculiar role in localized bone formation and the devel-
opment of syndesmophytes in SpA, with therapeutic 
relevance9,13 (Fig. 2). TNF-induced production of DKK1 
and consequently of sclerostin (which can suppress 
Wnt-mediated bone formation) is limited in SpA47,48. 
However, low concentrations or blockade of sclerostin 
and DKK1 have been associated with persistent inflam-
mation and syndesmophyte formation in AS47,49. Similar 
to DKK1, sclerostin is also found at low concentrations 
in the blood of patients with SpA49,50. HLA-B27 has been 
associated with low concentrations of DKK1 and scleros-
tin levels in AS51. Low concentrations of DKK1 have been 
found in patients with PsA as well39. As discussed further 
below, these molecular mechanisms could be, in part, 
responsible for the inability of TNF inhibitors to halt 
syndesmophyte formation in SpA9,13. With respect to 
IL-17, one study showed that concentrations of the Wnt 
inhibitors DKK1 and sclerostin increased after 6 months 
of treatment with the IL-17A inhibitor secukinumab in 
patients with PsA52, supporting a role for IL-17 in the 
stimulation of Wnt-mediated osteogenesis. Moreover, 
bimekizumab, a dual inhibitor of IL-17A and IL-17F, was 
able to inhibit inflammation-driven osteogenic differen-
tiation of human periosteal cells22. These results might 
have important relevance for the use of IL-17 inhibitors 
to halt new bone formation in SpA (Fig. 2).

In conclusion, the RANK–RANKL and the canon-
ical Wnt–β catenin pathways are critically involved in 
inflammatory bone resorption and formation, respec-
tively. Inflammatory mediators, primarily TNF, IL-6, the 
IL-23–IL-17 axis and JAK–STAT-mediated mechanisms, 
have a crucial role in the regulation of these processes. 
Targeted therapies directed against these mediators 
might effectively restore bone balance in inflammatory 
RMDs.

Targeted therapies and bone biomarkers
Targeted therapies used in RMDs such as RA or SpA can 
influence bone turnover and the release of circulating 
biomarkers (Fig. 2). These biomarkers include markers 
of bone formation, namely osteocalcin and procollagen 
type I N-propeptide (P1NP), as well as of bone resorp-
tion, such as C-terminal telopeptide (CTX) of type I col-
lagen, cathepsin K, matrix metalloproteinases (MMPs) 
and RANKL3,19,53–56. Inhibitors of bone resorption, 

Key points

•	Several molecules, especially inflammatory mediators, contribute to localized bone 
resorption and formation and to generalized osteoporosis associated with inflammatory
rheumatic and musculoskeletal diseases.

•	Targeted therapies could balance the pathological bone turnover in rheumatoid
arthritis; however, their effects on bone formation in spondyloarthritis are not 
equivocal and might depend on the disease stage.

•	most targeted therapies, particularly TNF inhibitors, might attenuate generalized 
bone loss in inflammatory rheumatic and musculoskeletal diseases, but more 
information is needed on the effects of other biologic DmaRDs and Janus kinase (JaK) 
inhibitors.

•	Few studies have assessed the effects of targeted therapies on the risk of fragility
fractures; more trials need to be conducted.
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such as osteoprotegerin, and those of bone formation, 
including DKK1 and sclerostin, have also been studied 
as markers of bone metabolism19,49,55 (Table 1). Most 
anti-cytokine therapeutics favourably affect the patho-
logical bone turnover underlying RA and SpA. However, 
for some of the effects of targeted therapies, especially 
with regard to bone formation, controversy remains that 
needs to be clarified by future therapeutic trials. As RA 
and SpA differ from each other in many ways, in this 
section we discuss the effects of targeted therapies on 
these two types of arthritis separately.

Effects of TNF inhibitors. A great amount of data has 
been published on the favourable effects of anti-TNF 
therapy on bone biomarkers in RA, beginning in the 
early 2000s55,57. At that time, it was clear that TNF inhib-
itors induced a reduction in bone resorption55,57, but their 
Wnt-mediated effect, resulting in an increase in bone 
formation, has become understood only recently9,13. The 
initial data on bone resorption effects were confirmed 

in studies with etanercept, adalimumab and also some 
with golimumab3. Anti-TNF agents have been shown 
to increase serum concentrations of osteo calcin and 
P1NP and to suppress CTX and RANKL levels in 
RA3,53,55–58. These findings were not always consistent, as 
in some studies anti-TNF agents showed no effects on 
osteo calcin, P1NP or CTX levels in some studies3,59,60, 
whereas in other studies TNF inhibitors increased osteo-
protegerin:RANKL, osteocalcin:CTX and P1NP:CTX 
ratios55,58,59. Moreover, TNF inhibitors also suppressed 
DKK1 production, leading to increased bone forma-
tion in patients with RA60,61. In some studies, anti-TNF 
treatment increased sclerostin production in RA19,62. In 
most studies in RA, changes in bone biomarkers induced 
by anti-TNF therapy were associated with or accompa-
nied by improvements in disease activity and inflam-
matory markers (for example, C-reactive protein (CRP)  
concentration)3 (Table 1).

TNF inhibition also increased serum concentra-
tions of osteocalcin, P1NP and sclerostin and decreased 
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Fig. 1 | Effects of targeted therapies on cellular and molecular pathways 
involved in inflammatory bone resorption. Osteoclasts are derived  
from TNF-stimulated bone marrow-derived macrophages and then 
osteoclast precursor cells. Osteoblasts and bone stromal cells release 
receptor activator of nuclear factor-κB ligand (RANKL), which binds to 
RANK on osteoclast precursor cells and stimulates osteoclast differentiation 
and activation. RANKL-dependent osteoclast differentiation is also 
mediated by pro-inflammatory cytokines (TNF, IL-1, IL-6 and IL-17) 
produced by innate immune cells, including macrophages. IL-6 and IL-23 
promote the differentiation of naive T cells into T helper 17 (TH17) cells. 
TH17-produced IL-17 stimulates synovial fibroblasts to release RANKL  

and thus promote osteoclast activation. Inflammation-independent, 
autoantibody-driven bone loss might also exist. B cells produce 
autoantibodies that can form immune complexes and stimulate osteoclast 
growth. Osteocytes are major producers of osteoprotegerin (OPG),  
which binds to and neutralizes RANKL, thus inhibiting the transition of 
osteoclast precursor cells to active osteoclasts. Targeted therapies, 
including inhibitors of TNF, IL-1, IL-6, IL-17 , IL-23, T cells (CTLA4-Ig), B cells 
(anti-CD20), Janus kinases (JAKs) and RANKL, can interfere with 
osteoclastogenesis and inflammatory bone resorption at different points 
in the pathways involved. IC, immune cell; M-CSF, macrophage 
colony-stimulating factor 1.
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concentrations of CTX and RANKL in SpA19,53,56,58 
(Table 1).

In a study comparing the effects of anti-TNF treat-
ment on bone markers in RA and PsA, serum con-
centrations of DKK1 were lower in patients with PsA 
than in those with RA63. As described above, low DKK1 
concentrations have also been found and have been 
associated with increased syndesmophyte formation in 
studies of AS, suggesting that similar mechanisms could 
be involved in the bone formation underlying PsA48,50. In 
a separate study of treatment with etanercept or certoli-
zumab pegol for 1 year in a mixed cohort of patients with 
RA or AS, anti-TNF therapy favourably influenced bone 
metabolism in the overall (mixed) cohort as indicated by 
several biomarkers19.

Effects of other targeted therapies. Among bDMARDs 
other than TNF inhibitors, the anti-IL-6 receptor anti-
body tocilizumab lowered concentrations of CTX64 and 
DKK1 (reF.46) in RA, whereas it also increased concen-
trations of biomarkers of bone formation including 
P1NP, osteoprotegerin, osteocalcin and sclerostin46,64,65. 
The anti-CD20 antibody rituximab (a B cell-depleting 
agent) decreased CTX concentrations, but increased 
P1NP concentrations and the osteoprotegerin:RANKL 
ratio in patients with RA66,67. JAK inhibitors decreased 
concentrations of some biomarkers of bone destruction68 
and increased those of osteocalcin and proteins in the 
Wnt signalling pathway in RA26,69 (Table 1).

With respect to SpA, the IL-17A inhibitor secuki-
numab decreased MMP3 levels in peripheral SpA70, 
which suggests that this therapy might be involved in 

the prevention of bone destruction by MMPs in this dis-
ease. As mentioned above, treatment with secukinumab 
also increased the production of DKK1 and sclerostin in 
patients with PsA52 (Table 1).

Interactions between DKK1 and sclerostin. The relation-
ship between DKK1 and sclerostin has become an 
interesting issue. The traditional concept was that both 
DKK1 and sclerostin inhibit Wnt-mediated osteo-
blast activation12,34,35. As discussed above, in general, 
TNF and IL-6 stimulate production of both DKK1 and 
sclerostin12,34,35. The neutralization of DKK1 also reduced 
sclerostin production12,35,42. These findings indicate that 
DKK1 and SOST might act in parallel during bone 
formation. Conversely, a number of studies19,49,52,61,62 
found that inhibition of TNF, IL-6 or IL-17 stimulated 
sclerostin production in most arthritides. Moreover, 
DKK1 production was decreased by TNF inhibition19, 
but increased by IL-17 inhibition19,52. As the inhibition 
of DKK1 by TNF inhibitors might result in increased 
Wnt-mediated bone formation, whereas stimulation 
of DKK1 production by IL-17 blockade might attenu-
ate this process, the different effects of anti-TNF and 
anti-IL-17 agents on production of DKK1 could, at least 
in part, explain the disparate effects of these two types of 
cytokine inhibitors on radiographic progression in SpA.

These observations also suggest that pro-inflammatory 
cytokines can differentially regulate DKK1 and sclerostin 
under inflammatory and non-inflammatory conditions. 
In general, sclerostin levels are lower in patients with 
SpA than in those with RA despite TNF blockade19,49. 
Moreover, low levels of sclerostin and DKK1 could reflect 
persistent inflammation and syndesmophyte formation 
in SpA, including AS48,49. Low serum concentrations of 
sclerostin despite TNF inhibition might explain, at least 
in part, why anti-TNF treatment is unable to control  
syndesmophyte formation in SpA49.

All these data suggest that in addition to inter-
actions of DKK1 and sclerostin with each other and 
with pro-inflammatory cytokines, other mechanisms 
might also exist that lead to disparate changes in DKK1  
and sclerostin release upon administration of targeted 
therapies (Fig. 2; Table 1).

Prediction of therapeutic response. Some of the biomark-
ers of bone turnover described above could also be used 
to predict response to targeted therapies. For example, 
in RA, low baseline concentration of RANKL and higher 
osteoprotegerin:RANKL ratio were associated with 
remission in patients receiving anti-TNF therapy71. In 
SpA, as discussed above, low baseline concentrations 
of sclerostin predict sustained inflammation in patients 
treated with bDMARDs49. Finally, baseline MMP3 con-
centrations have been associated with radiographic  
progression in AS72.

Targeted therapies and bone loss
Localized bone destruction and formation. The assess-
ment of erosions and localized bone formation is a usual 
end point in clinical trials of targeted therapies. Therefore, 
here we only very briefly mention the focal effects of 
bDMARDs and JAK inhibitors on bone. In general, most  
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Fig. 2 | Effects of targeted therapies on inflammatory bone formation. Mature osteo-
blasts derive from mesenchymal stem cells and pre-osteoblasts. The Wnt signalling path-
way has a crucial role in osteoblast differentiation. Dickkopf 1 (DKK1) and sclerostin block 
Wnt-dependent osteoblast maturation. TNF directly stimulates DKK1 and thus inhibits 
bone formation. IL-17 blocks DKK1 and thus enables Wnt-mediated bone formation. 
The role of IL-6 is controversial as different studies have shown that it can either stimulate 
or inhibit DKK1. DKK1 also stimulates sclerostin production; thus, TNF, IL-17 and IL-6 might 
act indirectly on sclerostin as well. Targeted therapies against these cytokines can interfere 
with the molecular events underlying Wnt-dependent inflammatory osteoblastogenesis 
and bone formation. Inhibitors of TNF, IL-6 and IL-17 may increase sclerostin levels.
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targeted therapies, including bDMARDs and JAK inhib-
itors, have been shown to attenuate the development of 
bony erosions and slow down radiographic progression 
in both RA and peripheral SpA (including PsA)3,73–75. 
Considering the dichotomy of inflammation-dependent 
versus inflammation-independent, autoantibody- 
mediated development of erosions12,29,32 (as discussed 
above), the former mechanism might account for the 
efficacy of cytokine inhibitors in delaying radiographic 
progression3,12,73, whereas the latter could be involved in 
the effects of abatacept or rituximab on joint destruction 
in RA29,32.

Data on the effects of targeted therapies on bone for-
mation suggest the presence of an optimal bone turnover 
rate that limits the extent of inhibition of radiographic 
progression. Early studies have suggested that erosion 
healing occurs in some patients with RA or SpA treated 
with targeted therapies12,76,77. Erosion repair might occur 
mostly in non-inflamed joints76,77 and is observed more 
frequently in patients with RA treated with anti-TNF 
therapy than those treated with methotrexate77. The lack 
of repair in most patients treated with anti-TNF agents 
could suggest that cytokines other than TNF are impor-
tant in the development of erosions12. Indeed, in a 2019 
study in RA, tocilizumab monotherapy resulted in better 
erosion repair than the combination of adalimumab and 
methotrexate78.

The molecular mechanisms possibly underlying the 
inefficacy of bDMARDs in halting new bone formation in 
AS and PsA are discussed above. In these diseases, local-
ized bone formation occurs in areas of enthesitis9,13,22,79. 
There is abundant production of pro-inflammatory 
cytokines, including TNF and IL-17, at entheseal sites 
in SpA13,79. These cytokines are important drivers of 
inflammation-dependent new bone formation13,22. 

The low levels of DKK1 and sclerostin, as well as insuf-
ficient blockade of Wnt signalling by DKK1 and scleros-
tin, are responsible for uncontrolled bone formation and 
the limited effects of anti-TNF agents on radiographic 
progression in advanced SpA9,48,49,80. By contrast, in the 
early, inflammatory stages of the disease with no defin-
itive radiographic damage of the sacroiliac joints, new 
bone formation might be more effectively controlled by 
bDMARDs including TNF and IL-17 inhibitors11,13,81–88 
or tofacitinib89 as determined by MRI. The positive effect 
of bDMARDs on early radiographic progression has 
been primarily observed in conjunction with improve-
ment of disease activity, suggesting that new bone forma-
tion is indeed mostly driven by local inflammation83,85. 
In a study published in 2020, IL-17 blockade with bime-
kizumab inhibited inflammation-driven osteogenesis22. 
In addition, new bone formation, as determined by MRI, 
correlated with low concentrations of DKK1 in a study 
of patients with SpA80. Bone formation in patients with 
AS treated with bDMARDs has been evaluated by use of 
18F-fluorodeoxyglucose (FDG) PET–CT (box 1). Among 
patients with AS, 12 weeks of anti-TNF treatment 
decreased the number of PET-positive lesions as well as 
FDG uptake in the costovertebral and sacroiliac joints of 
clinical responders90. In a 2020 study, localized bone ero-
sions, focal bone formation and generalized bone loss 
were evaluated in a spontaneous transgenic animal 
model of SpA (TgA86). Early anti-TNF treatment sig-
nificantly reduced the inflammatory phase, as well as 
bone loss, in these mice. This model may be suitable for 
preclinical evaluation of compounds being developed  
for the treatment of SpA91.

The results described above indicate that whereas 
radiographic progression in advanced AS is refractory to 
most targeted therapies, early inflammatory lesions that 

Table 1 | Effects of targeted therapies on biomarkers of bone resorption and formation in RA and SpA

Biomarker Effect indicated Targeted therapy Refs

TNF 
inhibitor

IL-6 
inhibitor

IL-17 
inhibitor

Anti-CD20 
antibody

JAK 
inhibitor

Bone resorption

Osteocalcin Bone formation ↑ or ↔ ↑ ↓ ↑ 26,55–58,64,65,67

P1NP Bone formation ↑ or ↔ ↑ ↔ ↑ 19,46,52,57,59,60,66

CTX Bone resorption ↓ or ↔ ↓ ↔ 46,52,55–60,64

RANKL Bone resorption ↓ or ↔ 58

Osteoprotegerin Inhibition of bone resorption ↔ ↑ 46,58,64

MMP3 Bone resorption ↓ ↓ ↓ 58,65

Osteoprotegerin:RANKL Bone turnover balance (high ratio favours 
formation)

↑ ↑ ↑ 19,26,53,67

Osteocalcin:CTX Bone turnover balance (high ratio favours 
formation)

↑ 19,53

P1NP:CTX Bone turnover balance (high ratio favours 
formation)

↑ 19,59

Bone formation

DKK1 Inhibition of bone formation ↓ ↓ ↑ 19,46,52,60,61

Sclerostin Inhibition of bone formation ↑ ↑ ↑ 19,46,52,62

Wnt signalling proteins Bone formation ↑ 26

↑, increase; ↓, decrease; ↔, no change; CTX, C-terminal telopeptide; DKK1, Dickkopf 1; JAK, Janus kinase; MMP3, matrix metalloproteinase 3; P1NP, type 1 procollagen 
N-terminal propeptide; RA, rheumatoid arthritis; RANKL, receptor activator nuclear factor-κB ligand; SpA, spondyloarthritis.
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would later undergo ossification could be responsive to 
such treatments8,9,83,84,90.

In conclusion, although most targeted therapies sup-
press localized bone loss and the development of erosions, 
there is still controversy with respect to the effects of these 
agents on syndesmophyte formation. The nature of the 
targeted therapy used and the stage of the disease might 
be important determinants of its effect on localized bone 
destruction and formation.

Generalized osteoporosis. Early publications in the 2000s 
reported favourable effects of anti-TNF therapies and 
other bDMARDs on osteoporosis associated with RA or 
SpA (reviewed elsewhere3,91) (Table 2). In most studies, 
anti-TNF treatment, in contrast to methotrexate mono-
therapy, slowed or halted generalized bone loss in associ-
ation with anti-inflammatory and clinical effects in both 
RA and SpA3,10,11,92. The prevention of further loss of bone 
mineral density (BMD) was also observed in those who 
did not have a clinical response to bDMARD therapy, as 
well as those who did, as measured by dual-energy X-ray 
absorptiometry (DXA)93. Very limited data are avail-
able on the possible favourable effects of targeted thera-
pies other than TNF inhib itors, such as tocilizumab46,93, 
rituximab94,95, abatacept94, the IL-1 inhibitor anakinra94, 
and the JAK inhibitors tofacitinib24,26,27 and baricitinib25,26, 
on arthritis-related systemic bone loss. In one study, 
micro-finite element analysis together with peripheral 
quantitative CT (QCT) (box 1) found that bDMARDs 
were more effective than methotrexate in preserving 
bone structure and bone strength in PsA96. To date, no 
studies on the effects of IL-17 and IL-23 inhibitors on 
osteoporosis associated with RMDs have been published11.

Studies have also evaluated the effects of targeted 
therapies on bone density as determined by DXA (box 1).  
In one study, RA was associated with decreased hand 
BMD, which did not change over time with TNF inhib-
ition63. In another study evaluating hand BMD by use 
of digital X-ray radiogrammetry in bDMARD-treated 
patients with RA or PsA, those with RA had sustained 

bone loss despite treatment, whereas in those with 
PsA periarticular BMD was unchanged following 
anti-TNF therapy97. Thus, different processes could be 
involved in hand bone remodelling in RA versus PsA98. 
Moreover, in the mixed cohort of patients with RA and 
AS described above19, TNF inhibition prevented bone 
loss at the lumbar spine and femoral neck in the overall 
cohort as assessed by DXA and this favourable effect was 
accompanied by the attenuation of disease activity and 
systemic inflammation19 (Table 2).

QCT determines volumetric BMD and is suitable 
for the assessment of cortical and trabecular bone loss 
in RMDs98,99 (box 1). QCT has also been used to assess 
peripheral bone density and the effects of treatment on 
osteoporosis in some arthritis studies98–100. However, to 
our knowledge, there have been no studies on targeted 
therapies in relation to RA. Therefore, we performed 
a QCT study on the aforementioned mixed cohort of 
patients with RA and AS. Anti-TNF treatment was 
able to arrest further bone loss in the forearm of these 
patients, and the effects of treatment on radial QCT were 
associated with vitamin D3 status, as well as cathepsin K 
levels at baseline101.

Very few studies have explored the possible effects 
of JAK inhibitors on bone (Table 2). Theoretically, JAK 
inhibitors could inhibit bone loss and promote bone 
formation24–28. In our 2021 study in which patients with 
RA were treated with tofacitinib (either 5 mg or 10 mg 
twice daily) for 1 year, good clinical efficacy was asso-
ciated with arrest of further bone loss as determined by 
DXA and QCT. As mentioned above, treatment with 
tofacitinib increased concentrations of osteocalcin, 
osteoprotegerin and vitamin D3, and decreased con-
centrations of CTX. CRP concentration, 28-joint dis-
ease activity score and serum concentration of RANKL 
correlated inversely with volumetric BMD; moreover, 
patient age and concentrations of CRP, ACPA and DKK1 
influenced the effects of tofacitinib therapy on BMD 
changes69. We have not found any other reports on the 
effects of JAK inhibitors on bone loss in arthritides.

In conclusion, targeted therapies could dampen the 
development of secondary osteoporosis in RA and SpA. 
Most of those available concern TNF inhibitors. More 
clinical data are needed to determine the effects of JAK 
inhibitors and bDMARDs other than TNF inhibitors.

Fragility fractures. An increased risk of fragility fractures 
has been similarly observed in patients with RA, SpA and 
other inflammatory RMDs1,4–7. Therefore, regular verte-
bral fracture assessment by use of DXA or conventional 
radiography, as well as calculation of 10-year fragility frac-
tures risk using the FRAX tool, is crucial4,5. Every patient 
with RMD who has osteoporosis and a high risk of fragil-
ity fractures should receive calcium and vitamin D supple-
mentation in addition to the necessary anti-osteoporotic 
pharmacotherapy4,5. As well as reaching remission or 
low disease activity of arthritis, corticosteroid therapy 
should be used at the lowest effective dose3–5.

Very few studies have assessed the efficacy of tar-
geted therapies for the prevention of fragility fractures10. 
In a 2020 cohort study that used data from an insurance 
database, the occurrence of non-vertebral fractures and 

Box 1 | Imaging tools for the clinical assessment of bone

•	localized bone destruction (erosions): radiography, ultrasonography, mRI
 - early inflammatory and destructive lesions can be detected only by ultrasonography 
and mRI

 - Radiography is suitable only to evaluate bony erosions
 - High-resolution peripheral quantitative CT (QCT) can detect localized bone 
destruction and is highly effective in determining spatial resolution

•	localized bone formation (erosion healing and syndesmophytes): radiography, mRI
 - Radiography can demonstrate advanced bone formation
 - early bone formation can be visualized with mRI
 - In a research setting, early bone formation can be assessed using 

18F-fluorodeoxyglucose (FDG) PeT–CT

•	Generalized osteoporosis: dual-energy X-ray absorptiometry (DXa), digital X-ray 
radiogrammetry, ultrasonography, peripheral QCT 

 - DXa is used in everyday clinical practice
 - Peripheral QCT is suitable for assessing bone structure and for separately studying 
trabecular and cortical bone

 - ultrasonography is an easy-to-use technique that can assess generalized 
osteoporosis, especially if DXa is not available

 - Digital X-ray radiogrammetry is suitable for assessing generalized osteoporosis in 
the hands
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vertebral fractures requiring hospitalization was similar 
among patients with RA treated with TNF inhibitors, 
tocilizumab or abatacept102.

Little information is available on JAK inhibitors and 
risk of fragility fractures. The effects of these drugs on 
osteoporosis has been a matter of debate. On the basis 
of preliminary in vitro experiments and animal stud-
ies, JAK inhibitors might attenuate bone loss and pro-
mote bone formation24,25,27; therefore, stopping these 
medications in patients with RA who have osteoporotic  
fractures might be unnecessary27.

With respect to SpA, in a prospective longitudinal 
study carried out in patients with AS treatment with etan-
ercept increased BMD; however, the number of patients 
with vertebral fractures and the severity of fractures 
increased, as did radiographic progression in the spine, 
underscoring that spondylitis and vertebral fractures are 
related103. A 2019 systematic literature review also con-
firmed that anti-TNF treatment improved BMD but did 
not affect rates of vertebral fractures in axSpA11.

In conclusion, although targeted therapies might 
slow or halt generalized bone loss, very few studies 
have included fragility fractures as an end point. More 
trials using fragility fractures need to be conducted in  
inflammatory RMDs.

Conclusions
Inflammatory RMDs have been associated with localized 
and generalized bone loss, as well as with localized new 
bone formation. Systemic inflammation is an important 
contributor to inflammatory bone resorption. In RA and 
peripheral SpA, the RANK–RANKL–osteoprotegerin 

axis is involved in bone destruction, whereas in SpA the 
Wnt-β-catenin pathway, DKK1 and sclerostin are impor-
tant for syndesmophyte formation. Targeted therapies, 
including various bDMARDs and JAK inhibitors, inhibit 
osteoclast-mediated bone resorption. These treatments 
can stabilize bone metabolism, as indicated by their 
effects on bone resorption and formation. Targeted 
therapies can also improve BMD and halt radiographic 
progression in RA and peripheral SpA (including PsA). 
In axSpA, however, anti-TNF agents might not be able 
to prevent syndesmophyte formation. In early axSpA, 
inflammation-driven bone formation may be attenu-
ated by anti-TNF and anti-IL-17 agents. More clinical 
studies are needed in order to assess the effects of other 
targeted therapies on localized bone formation. The 
stage of SpA might also be important in this respect as 
bDMARDs might be more effective in early axSpA than 
in established AS. Although multiple studies confirmed 
the favourable effects of bDMARDs, primarily TNF 
inhibitors, on secondary osteoporosis associated with 
inflammatory RMDs, rather few studies have assessed 
the possible effects of targeted therapies on fragility 
fractures. The future research agenda should include the 
determination of the effects of inhibitors of IL-17, IL-23 
and JAKs and other targeted therapies on bone, including 
fragility fractures; the effects of combinations of targeted 
therapies and antiresorptive and/or osteo anabolic drugs; 
as well as the effects of targeted therapies on the preven-
tion of syndesmophyte formation in the early stages of 
SpA and repair of small, early erosions in RA.
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Table 2 | Effects of targeted therapies on localized bone loss or bone formation and generalized bone loss

Disease Targeted therapy Refs

TNF inhibitor IL-6 inhibitor IL-17 
inhibitor

Anti-CD20 
antibody

JAK inhibitor

Localized bone loss

RA Progression ↓, erosion 
repair ↑ or ↔

Erosion ↓, erosion 
repair ↑↑

Progression ↓ Progression ↓ 12,24,67, 

73–75,77,78

SpA Early SpA: progression ↓ 
Advanced SpA: ↔

Early SpA: 
progression ↓

Early SpA: 
progression ↓

11,22,48,49, 

81–85,87–90

Generalized bone loss

RA Bone loss ↓ Bone loss ↓ Bone loss ↓ Bone loss ↓ 10,19,24,26,27,46, 

54,62,66,69,92–94

SpA Bone loss ↓ Bone loss ↓ Bone loss ↓ Bone loss ↓ 11,19,24, 

26,27,54,94

↑, increase; ↓, decrease; ↔ , no change; JAK, Janus kinase; RA, rheumatoid arthritis; SpA, spondyloarthritis.
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Osteoarthritis (OA) is the most common form of arthri-
tis, affecting more than 500 million people worldwide 
(~7% of the global population), with particularly high 
prevalence in those of advanced age (>65 years of age)1. 
Epidemiological studies report an increasing incidence 
of OA in individuals <65 years of age owing to rising 
obesity, an increasing number of post-traumatic OA 
(PTOA) cases and diagnosis at an earlier stage2. OA is a 
complex disease characterized by pathological changes 
across all the joint tissues, including cartilage, subchon-
dral bone, ligaments, menisci, the joint capsule and the 
synovial membrane3. The widely accepted hypothesis of 
OA pathogenesis implicates an initial injury, frequently 
biomechanical, of any of these structures, which results 
in the release of mediators that lead to activation of dif-
ferent inflammatory pathways that damage cartilage. 
However, increasing evidence indicates that low-grade 
synovial inflammation (synovitis) contributes to  
radiographic and pain progression in OA.

Baseline synovitis detected by magnetic resonance 
imaging (MRI) or ultrasonography is associated with 
radiographic progression of OA, as defined by worsen-
ing of Kallgren and Lawrence (KL) grade or narrowing 
of joint space4–11. Synovitis progression is also associ-
ated with more cartilage damage12. Radiographic pro-
gression and development of erosions in hand OA13–16 
and accelerated knee osteoarthritis (AKOA; defined as 
a transition from no radiographic knee OA to advanced 
stage disease within 4 years)17,18 are also associated with  
synovitis. More than 2 years before onset, patients  
with AKOA present with more pain, synovitis-effusion of  

larger volumes and signal alterations in the infrapa-
tellar fat pad (IFP) compared with patients who develop 
typical knee OA17,18. MRI and ultrasonography have 
also been used to evaluate associations between syn-
ovitis and pain5,19–27, finding that synovitis contributes 
to pain in OA. Of note, a study found that synovitis 
partially mediates the association between cartilage 
damage loss and worsening pain: each 0.1-mm loss of 
cartilage over 24 months translated to an increase in 
the Western Ontario and McMaster Universities Osteo-
arthritis Index (WOMAC) pain subscale score of 0.32  
(95% CI 0.21–0.44)28.

However, the results of preclinical studies in animal 
models and of clinical trials have been contradictory29. 
Although blocking pro-inflammatory mediators 
secreted by the synovium and cartilage (including 
IL-6 and IL-1RA) has an analgesic effect and decreases 
structural progression in several preclinical models of 
OA30–33, not all of these studies confirmed a protective 
role of cytokine blocking in animal models34. In addi-
tion, in randomized controlled clinical trials in patients 
with painful erosive hand OA, whose erosive pheno-
type was associated with the presence of synovitis13–16, 
inhibition of the inflammatory mediators IL-1β, IL-6 
and tumour necrosis factor (TNF) did not improve 
pain, synovitis or OA progression, as assessed by MRI 
or ultrasonography35–39. Finally, individuals (n = 18) 
with knee OA without inflammation (by ultrasonog-
raphy) experienced a more prolonged benefit from 
intra-articular corticosteroid treatment than individuals 
with ultrasonography-identified inflammation (n = 16)40.  

Synovial inflammation in osteoarthritis 
progression
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Abstract | Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deteriora-
tion. Synovial inflammation is present in the OA joint and has been associated with radiographic 
and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical 
loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other 
factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, 
metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflamma-
tion. An understanding of the activated pathways that are involved in OA-related synovial  
inflammation could form the basis for the stratification of patients and the development of novel 
therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing  
in or recruited to the synovium interact with each other, how they become activated, how they 
contribute to OA progression and their interplay with other joint structures.
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Taken together, these data raise the question as to 
whether synovial inflammation is involved in OA  
pathogenesis, progression or associated joint pain.

In this Review, we describe the current knowledge of 
synovitis in OA joints, and discuss the pathology (Fig. 1), 
risk factors (Fig. 2) and cell types associated with synovial 
inflammation in OA. We focus on the mediators of syno-
vial inflammation (Fig. 3), the crosstalk between synovial 
cells (Fig. 4) and their clinical relevance (Table 1, Table 2).

Synovitis in OA
Synovitis scores based on macroscopic features in the 
OA joint typically assess the presence and abundance of 
vascularity, villi, fibrin deposits and hyperplasia assessed 
by visualization of the synovium during arthroscopy41,42, 
although other scores use features such as hypertrophy, 
vascularity and global synovitis43. Synovitis scores based 
on microscopic histological features have also been 
developed, such as the histological score developed by 
Krenn, which includes assessment of synovial hyper-
plasia, stromal cell activation and inflammatory infil-
trate extent; this score was able to discriminate between 
degenerative and inflammatory diseases44–47. Other syn-
ovial OA scores are being developed that include char-
acteristic features of the OA synovium and are based 
on the predominance of each feature; synovial changes 
in OA have thus been classified as hyperplastic (villous 
hyperplasia), fibrotic (capsular fibrosis), detritus-rich 
(fibrinous exudate and cartilage and bone debris) and 
inflammatory (diffuse inflammation and aggregates of 
lymphoplasmacellular infiltrates), despite all of these 
features usually coexisting48. If present, synovial inflam-
mation (synovitis) is characterized by proliferation of 
fibroblast-like synoviocytes (FLS) and macrophage 
recruitment, resulting in hyperplasia of the synovial 
lining. The synovial sub-lining can also be enriched in 
macrophages, T cells and, to a lesser extent, mast cells,  
B cells, plasma cells and endothelial cells (as components 
of blood vessels)49.

The two main imaging techniques that are used 
for synovium assessment, MRI (including contrast- 
enhanced MRI (CE-MRI) and conventional MRI) and 
ultrasonography, show good correlation with macro-
scopic and microscopic histological features of inflam-
mation (box 1). Imaging studies revealed that synovitis 

in OA has a patchy distribution in different anatomical 
sites of the synovium, including in suprapatellar, infrapa-
tellar, lateral and medial parapatellar and subpopliteal 
locations, as well as adjacent to posterior cruciate liga-
ments, and the extent of synovitis can also be different 
across these different locations50. This distribution may 
be clinically relevant, as different locations and scores 
of synovial inflammation determined by CE-MRI 
correlate differently with pain and radiographic OA 
severity51. Synovitis can be present at any disease stage49, 
and a study reports a correlation between the patterns of 
patient-reported knee pain and the location of synovitis; 
specifically, suprapatellar pain was highly associated 
with suprapatellar synovitis on MRI52. Joint effusions 
and synovitis may be detected by MRI in subjects with 
OA joint pain and normal or very minimal damage 
by joint radiography, indicating that synovitis is not 
restricted to late stages of disease11. A post-mortem study 
reported a prevalence of synovitis of 11% in patients with 
no OA history or pain, compared with a prevalence of 
67% in synovium from end-stage OA joint replacement 
surgeries53. Interestingly, inflammatory infiltrates coexist 
with fibrotic changes and angiogenesis in OA, which 
can be more prevalent in the late stages than in the early 
stages of the disease48,54 (Fig. 1).

Cell types in the OA synovium
The inflammatory cell subsets that exist in synovial 
tissues have been identified by flow cytometry, single-cell 
transcriptomics and mass cytometry. Evaluation of the 
synovium from patients with OA undergoing knee 
replacement showed highly heterogeneous cell popula-
tions. Whereas all synovial fibroblasts expressed IL-6, 
a cytokine independently associated with OA pain and 
radiographic progression55,56, CD34+CD90+ fibroblasts 
located in the synovial sub-lining express substantially 
more IL-6 than CD34−CD90− fibroblasts in the syno-
vial lining57. In addition, study participants categorized 
into clusters based on a high mesenchymal cell content 
or IL-6 release in the synovial inflammatory response 
had a history of prior joint surgery57. Single-cell RNA 
sequencing (scRNA-seq) detected 12 different expres-
sion profiles in cells of the synovium, including (from 
most to least abundant) synovial sub-intimal fibroblasts,  
synovial intimal fibroblasts, HLA-DRA+ cells (immune  
regulatory macrophages and inflammatory macro-
phages, dendritic cells, activated pro-inflammatory 
HLA-DRA+ fibroblasts and B cell clusters), smooth mus-
cle cells, endothelial cells, T cells, mast cells and prolifera-
ting immune cells58. In addition, OA synovial samples 
contain more NUPR1+ monocytes than in leukocyte- 
rich rheumatoid arthritis (RA) synovial samples  
(P < 0.01), which contain a greater abundance of IL-1β+ 
(P < 0.001) and IFN-activated monocytes (P < 0.01) 
than OA synovium. NUPR1+ monocytes express high 
levels of tissue remodelling factors, such as the receptor 
tyrosine kinase MERTK and the osteoclast progenitor 
markers osteoactivin and cathepsin K59. Together, 
these studies indicate a considerable heterogeneity in 
cell subtypes and interaction networks in the OA syn-
ovium, which requires further characterization and 
understanding.

Key points

•	Imaging studies suggest that synovial inflammation may be present in both early 
osteoarthritis (oa) and advanced-stage oa and is involved in the development  
and progression of oa.

•	Synovial cells coordinate the production of molecules that initiate and maintain 
synovial inflammation and contribute to cartilage damage during oa progression.

•	Diverse stimuli, including bioactive lipids, prostaglandins, tricarboxylic acid cycle 
intermediates, cytokines and damage-associated molecular patterns, as well as 
clinical factors such as obesity, ageing, trauma and excessive mechanical loading, 
regulate the production of pro-inflammatory and anti-inflammatory mediators  
by synovial cells.

•	There is a need for functional imaging and cellular and molecular studies, together 
with a more robust histological interpretation at different stages of oa, to better 
stratify patients with oa and understand the role of synovitis in oa onset  
and progression.
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Synovial macrophages in OA
Macrophages are the most abundant immune cells in the 
synovium, comprising 12–40% of synovial immune cells, 
depending on the surface markers employed58,60,61, and 
they orchestrate the inflammatory and resolution phases 
after tissue injury62. Macrophages are also the main 
leukocyte population in synovial fluid in human OA 
knee joints (median = 36.5% of leukocytes), followed by 
T cells (25%)63. In particular, the CD14+CD16+ macro-
phage subset (35% of the total macrophage population 
in synovial fluid) expresses the mature macrophage 
marker 25F9 (17.3% of the CD14+CD16+ macrophages), 
indicating activation63. Interestingly, linear modelling 
(adjusted for sex, BMI and age) showed that the ratio 
of CD14+ macrophages to total macrophages is a pre-
dictor of Knee Injury and Osteoarthritis Outcome 
Score (KOOS) and WOMAC score, regardless of CD16 
expression by this subset of macrophages63 (Table 1). In 
OA synovia, scRNA-seq of 10,640 synovial cells from 
3 patients revealed that ~12.8 % of these cells were 
HLA-DRA+, and this subset includes immunoregula-
tory and pro-inflammatory macrophages, dendritic 
cells, pro-inflammatory fibroblasts and B cells58. The 
quantity of activated macrophages in OA knee joints 
detected by single-photon emission computed tomog-
raphy (SPECT)–CT with the folate receptor-targeting 
imaging agent 99mTc-EC20 (etarfolatide) correlated with 
radiographic OA severity and symptoms, including pain 
and stiffness (self-reported on a scale from 0 to 3)64.

Consequently, disruption of pro-inflammatory 
macro phage infiltration into the synovium has been pro-
posed as a potential therapeutic approach. In a mouse 
model of OA, inhibition of CC-chemokine receptor type 2  
(CCR2; the receptor for the monocyte chemoattractant 
CCL2) impedes blood monocyte recruitment to injured 
joints and decreases synovitis and cartilage destruction65. 
In another study, depletion of synovial macrophages by 

intra-articular injection of anti-CD14-conjugated mag-
netic beads or clodronate-loaded liposomes decreased 
production of IL-1β, TNF and matrix metallopro-
teinases (MMPs) by synovial fibroblasts and reduced 
cartilage damage and osteophyte formation66,67. By 
contrast, depletion of joint macrophages in Csf1r–GFP+ 
macrophage FAS-induced apoptosis transgenic mice 
resulted in increased synovitis but did not inhibit the 
development of OA, owing partly to increased infil-
tration of neutrophils (>eightfold) and CD3+ T cells  
(>fivefold) into the synovium of injured joints, which 
cause additional damage68. These results suggest that a 
better understanding of macrophage subsets and their 
role in both healthy and injured or inflamed joints is 
needed. Identification of pathological macrophage  
subsets might provide a good opportunity to curtail  
synovitis and tissue damage.

The pro-inflammatory or anti-inflammatory capac-
ity of macrophages is defined based on their effector 
function, transcription and metabolic programme, and 
surface marker expression (reviewed elsewhere69,70). 
Considerable effort has been focused on advancing 
the identification of macrophage subsets in healthy 
and inflamed joints and understanding how these 
populations are associated with clinical outcome. In 
particular, a study in 184 patients with radiographic 
knee OA from two different cohorts found that the 
concentration of the macrophage markers CD14 and 
CD163 in synovial fluid and blood are associated with 
OA phenotypic outcomes71. Levels of both macrophage 
markers in the synovial fluid were significantly asso-
ciated with activated macrophages in the joint detected 
by 99mTc-EC20 SPECT–CT, mainly in the capsule 
(P = 0.002 and P = 0.005, respectively) and the synovium 
(P = 0.0005 and P = 0.002, respectively), of patients with 
knee OA71. Interestingly, CD14 and CD163 levels in the 
synovial fluid were associated with osteophyte severity, 

*

*
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Fig. 1 | Synovial inflammation and fibrosis in osteoarthritis. Haematoxylin and eosin staining of synovial tissue from 
patients who underwent total knee replacement. a,b | Features of an inflammatory phenotype are highlighted in the 
magnified insets, including hyperplasia of the synovial lining (asterisk in part a), and cellular infiltrates and vascularization 
in the sublining layer (asterisk in part b). c,d | Features of a fibrotic phenotype are highlighted in the magnified insets, 
including fibrosis in the sublining layer (asterisks in parts c and d).
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whereas synovial fluid CD14 and serum CD163 levels 
were associated with severity of joint space narrowing. 
The severity of self-reported knee joint symptoms was 
associated with CD14 levels in both synovial fluid 
(β = 0.773, P = 0.003) and serum (β = 0.641, P = 0.031)71. 
The ratio of CD11c+ to CD206+ macrophages or CD86+ 
to CD163+ macrophages in synovial fluid was associated 
with KL grading and severity of knee OA in patients72. 
Pro-inflammatory macrophages in OA synovium show 
upregulated production of matrix metalloproteinases 
(including MMP1, MMP3, MMP13 and MMP9), aggre-
canases (including ADAMTS4 and ADAMTS5) and 
cyclooxygenase 2, leading to articular degeneration73. In 
addition, secretion of the pro-inflammatory cytokines 
IL-1β, IL-6, and TNF and oncostatin M stimulates 
destructive processes in chondrocytes and mesenchy-
mal cells, including downregulating synthesis of type II 
collagen (an indispensable component of healthy artic-
ular cartilage) and aggrecan, limiting chondrogenesis74. 
Interestingly, CD68+ macrophages also contribute to loss 
of articular type II collagen by engulfing and presenting 
collagen fragments to CD4+ T cells75.

Anti-inflammatory macrophages also express the 
mannose receptors MRC1 and MRC2, which bind to 
collagen and promote its internalization and lysosomal 

degradation. The resulting improvement in collagen turn-
over restores ECM homeostasis in the joint and amelio-
rates cartilage destruction76. Importantly, type II collagen 
helps to maintain expression of anti-inflammatory genes 
in macrophages as well as pro-chondrogenic cytokines77.

Macrophage phenotyping studies have also iden-
tified subsets of alternatively activated macrophages 
(that is, macrophages that are enriched in neither 
pro-inflammatory nor anti-inflammatory mark-
ers), which are more likely to be involved in healing 
inflammation78. Indeed, OA synovial macrophages 
do not perfectly align with surface marker expression 
profiles corresponding to classical pro-inflammatory 
or anti-inflammatory phenotypes, but have been clas-
sified as a population that resembles macrophages in 
RA based on their expression of proliferation genes, 
and another population is characterized by expression 
of cartilage-remodelling genes61. A scRNA-seq study 
detected heterogeneous macrophage cell types in the 
OA synovium, including immunoregulatory (expressing 
SEPP1, FOLR2, STAB1, TXNIP and CD169) and pro- 
inflammatory (expressing CCL3, CCL4, IL1B and TNF) 
macrophage subsets58. Interestingly, this immuno-
regulatory population, which does not align with typi-
cal pro-inflammatory or anti-inflammatory phenotypes, 
exhibits a gene expression profile suggestive of enhanced 
phagocytic activity and immunosuppressive activity.

These results suggest that shifting macrophages 
towards phenotypes that might contribute to restora-
tion of the damaged articular cartilage could repre-
sent a potential treatment for OA. Several therapeutic 
interventions have the ability to modify macrophage 
phenotypes in OA synovium. For example, glucocorti-
coids increase the proportion of CD163+FRβ+ synovial 
macro phages, and slightly reduce the proportion of 
CD68+ macrophages in the synovial lining, in patients 
with OA, resulting in decreased osteophyte formation79,80. 
Similarly, a cell-mediated gene therapy that is in phase II 
trials in patients with OA and allows localized delivery 
of transforming growth factor β1 (TGFβ1) improved 
the International Knee Documentation Committee, 
WOMAC and pain (evaluated on a visual analogue scale 
from 0 to 10) scores, elevated anti-inflammatory mark-
ers in the joints and potentiated IL-10 production81,82. 
In addition, functional imaging techniques (besides 
99mTc-EC20 SPECT–CT) that allow the identification of 
macrophage subsets will help in stratifying patients with 
OA. Novel probes that target other macrophage markers, 
including CD206 (reF.83), formyl peptide receptor 1 (reF.84) 
or somatostatin subtype receptor 2 (reF.85), will improve 
understanding of macrophage phenotypes in OA.

Synovial FLS in OA
FLS are specialized mesenchymal cells that lubricate the 
cartilage by producing synovial fluid rich in lubricin and 
hyaluronic acid (also known as hyaluronan). The con-
centration of lubricin and hyaluronic acid is decreased 
in OA synovial fluid, partly owing to changes in synovial 
membrane permeability, but it is also associated with a 
change in hyaluronic acid size86. Synovial fluid viscos-
ity is decreased in OA and may be related to joint pain, 
as viscosupplementation therapy with intra-articular 

• Meniscus and ligament 
injuries

• Intra-articular fractures

Trauma

• Shear stress and 
compression

• Induces inflammatory 
mediators (e.g. NOS, 
IL-6 and IL-8)

Mechanical loading

• Obesity
• Type 2 diabetes mellitus

Comorbidities

• Diet might shape the gut 
microbiome

• Microbial dysbiosis
• Changes in intestinal 

permeability
• Metabolic endotoxaemia 

(systemic LPS) correlates 
with activated synovial 
macrophages

Diet and gut microbiome

Diet

Fig. 2 | Osteoarthritis risk factors and synovitis. Among the risk factors associated  
with osteoarthritis (OA) development and progression, trauma, mechanical loading, 
comorbidities and diet–microbiome interactions are also related to synovitis. Injury  
to the meniscus or ligaments and intra-articular fractures lead to the development  
of synovitis. Aberrant and excessive loading is a known risk factor for developing OA, and 
subsequent shear stress and compression induce production of inflammatory mediators 
such as nitric oxide synthase (NOS), IL-6 and IL-8, which contribute to OA pathogenesis. 
Synovitis has also been related to obesity and type 2 diabetes mellitus. Dietary habit, 
which has been demonstrated to increase pain prevalence in patients with OA, is one  
of the factors that influence the composition of the gut microbiome. Microbial dysbiosis 
(that is, alteration in gut microbiome composition) favours inflammation and metabolic 
syndrome, as well as changes in intestinal permeability and metabolic endotoxaemia, 
which correlates with recruitment of activated pro-inflammatory synovial macrophages. 
LPS, lipopolysaccharide.
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hyaluronic acid decreases pain in patients with OA87.  
The transformation of healthy FLS into activated and patho-
logical cells has been extensively studied in RA and less  
so in OA. Among the many factors that activate FLS in 
OA, follistatin‐like protein 1 (FSTL1) is overexpressed  
in the OA synovium, and the levels of this protein correlate 
with OA severity (assessed by KL and WOMAC scores)88. 

Activated OA FLS secrete pro-inflammatory cytokines, 
chemokines and proteolytic enzymes (MMPs and 
aggrecanases), thereby contributing to the propagation  
of inflammation and destruction of the cartilage matrix89.

The different FLS phenotypes and their roles in 
OA pathogenesis have been described in studies in the 
past few years. A study focusing on RA FLS described 
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Fig. 3 | Molecular mediators that contribute to synovial inflammation 
in osteoarthritis. Ageing and mitochondrial damage increase reactive 
oxygen species (ROS) production and mitochondrial DNA mutations and 
can prolong the production of pro-inflammatory cytokines such as IL-1β 
and IL-6. Senescent cells are associated with age-related pathological 
conditions such as osteoarthritis (OA), and several senescence-associated 
secretory phenotype (SASP) factors are inflammatory mediators. Cellular 
metabolites, such as nitric oxide (NO), succinate and prostaglandins,  
as well as other bioactive lipids, contribute to inflammation and  
cartilage damage. NO levels are elevated in chondrocytes and pro- 
inflammatory macrophages in patients with OA. Succinate accumulates 
in inflammatory macrophages and supports their pro-inflammatory 
phenotype. The succinate receptor SUCNR1 is activated by soluble 
succinate and boosts IL-4 production. Prostaglandin E2 (PGE2) is 
considered the major contributor to inflammatory pain in the joint and 
signals through receptors such as EP4, thereby enhancing production of 
the pro-inflammatory factors NO (by increasing expression of inducible 
nitric oxide synthase (iNOS)) and IL-6, which also contributes to synovitis 
and increases hyperalgesia. PGD2 is also enriched in synovial fluid from 

patients with OA. Damage-associated molecular patterns (DAMPs) and 
alarmins, in the context of mechanical stress, interact with Toll-like 
receptors (TLRs), receptor for advanced glycation end products (RAGE) 
and other pattern recognition receptors to initiate and propagate 
inflammation. DAMPs such as high mobility group protein B1 (HMGB1) and 
heat shock proteins (HSPs) are abundant in OA synovial fluid. S100 family 
proteins are also upregulated in inflamed synovial tissue. Ectopic 
deposition of hydroxyapatite crystals, calcium pyrophosphate dihydrate 
(CPPD) microcrystals and monosodium urate (MSU) crystals, which may 
signal through P2X7 (depicted) or CD11b, CD16 and CD14 (not shown), as 
well as ATP released from dying cells, are detected by macrophages and 
trigger NLRP3 inflammasome activation and IL-1β and IL-18 production. 
MSU crystals correlate with levels of IL-1β and IL-18 in synovial fluid. 
Complement factors are highly expressed in OA and play a role in OA 
pathogenesis. Diet is one of the determining factors of microbiome 
composition. An altered gut microbial composition is associated with 
increased intestinal permeability and metabolic endotoxaemia (systemic 
lipopolysaccharide (LPS)), which is associated with recruitment of 
pro-inflammatory macrophages in the synovium.
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different functional associated phenotypes in FLS iso-
lated from fresh synovial tissue from patients with OA 
compared with patients with RA who underwent joint 
replacement90 (Table 1). In a 2021 study, the transcrip-
tomic profiles of synovia and FLS isolated from patients 
with OA were distinct between patients with early or 
end-stage OA as well as between patient-reported pain 
zones and pain-free zones52. The transcriptome of syno-
vium from pain zones in patients with early OA was 
characterized by upregulated expression of pro-fibrotic 
and pro-inflammatory genes, whereas the transcriptome 
of both early and end-stage OA showed upregulation of 
several nociceptive signalling pathways and neuronal 
growth genes52. Interestingly, scRNA-seq analysis of 
synovial explant FLS revealed that the gene expression 
profile of an FLS cluster representing the end-stage OA 
pain zone was associated with eicosanoid signalling, and 
the most active functions in these cells were “migration 
of cells” and “cell viability”52. Eicosanoid signalling was 

also associated with a FLS cluster related to early OA pain 
zone. The end-stage OA FLS had a transcription profile 
similar to the leukocyte-rich RA FLS described in a pre-
vious study59, whereas the early OA FLS resemble the FLS 
found to be more predominant in OA in this previous 
study59.

Other synovial cells in OA
Neutrophils are another innate immune cell type that 
is found in the OA knee joint and are highly abun-
dant in synovial fluid compared with synovial tissue91, 
although the reason for this distribution is still unknown. 
The secretion of the key proteolytic enzymes elastase  
and neutrophil gelatinase-associated lipocalin by activated 
neutrophils correlates with cartilage damage and radio-
graphic progression91,92. Mast cells are also present in the 
synovium and are associated with inflammation and car-
tilage destruction in OA93. Synovial fluid from individu-
als with OA is enriched in tryptase (2–25 ng/ml), a mast 
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Chondrocytes

Fig. 4 | Cellular crosstalk in synovitis and OA progression. Activated fibroblast-like synoviocytes (FLS) in the osteoar-
thritis (OA) synovium secrete, among other factors, cytokines, growth factors, matrix metalloproteinases (MMPs) and  
tissue inhibitors of metalloproteinases (TIMPs), which contribute to macrophage activation and stimulate catabolic path-
ways in chondrocytes. Similarly, activated macrophages secrete pro-inflammatory mediators that stimulate FLS and  
chondrocytes, promoting the degradation of extracellular matrix (ECM) components. ECM degradation products further 
activate both FLS and macrophages, resulting in a repeating cycle of inflammation and cartilagedegradation. CCL2, 
CC-chemokine ligand 2; MCP1, monocyte chemoattractant protein 1; sICAM1, soluble intercellular adhesion molecule 1; 
sVCAM1, soluble vascular cell adhesion molecule 1; TGFβ, transforming growth factor-β; TNF, tumour necrosis factor; 
VEGF, vascular endothelial growth factor.
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cell-specific enzyme that is released during degranulation, 
compared with control individuals94. Deficiency of mast 
cells reduces cartilage loss, osteophyte formation and syno-
vitis in the destabilization of the medial meniscus (DMM) 
mouse model of OA94. In addition, mast cell-dependent 
production of prostaglandin D2 in response to elevation 
in nerve growth factor (NGF) levels leads to an increase in 
nociceptive signalling in OA joints95.

Endothelial cells are present in joint structures 
and angiogenesis is implicated in OA pathogenesis96. 
Histological analysis of established OA synovium 
detected pericytes in all blood vessels, suggesting that 
these vessels are fully mature and stable, which might 
explain the persistent inflammation in OA; by contrast, 
the synovial vasculature in inflammatory arthritis is 

characterized by a mixture of mature and immature 
vessels97. This study also found that blood vessels 
were distributed throughout the depth of the synovial 
membrane in OA, without preferential distribution in 
synovial lining cells97. Endothelial-cell-derived vas-
cular endothelial growth factor (VEGF) seems to play  
an important part in OA pathogenesis, as the serum and 
synovial fluid concentration of VEGF correlates posi-
tively with WOMAC, radiographic severity (KL score) 
and the presence of osteophytes and a power Doppler 
ultrasonography signal of synovitis98. Although VEGF 
is crucial for cartilage formation, its expression seems 
to be upregulated in the joint of patients with OA and 
in surgically induced knee OA in mice; increased VEGF 
expression is associated with catabolic processes in 

Table 1 | Clinical relevance of cell types associated with synovitis in OA

Cell type Markers Clinical relevance Refs

Macrophages Folate receptor detected by 99mTc-EC20 
SPECT–CT

The quantity of activated macrophages correlated with radiographic OA 
severity and pain and stiffness

71

CD14+CD16+ macrophages in synovial fluid 
express mature macrophage marker 25F9 
(indicating activation)

CD14+ macrophages/total macrophages ratio in synovial fluid is a predictor 
of KOOS and WOMAC scores, regardless of CD16 expression

63

CD14 and CD163 in synovial fluid significantly 
associated with activated macrophages 
(detected by 99mTc-EC20 SPECT–CT), in the 
capsule (P = 0.002 and P = 0.005, respectively) 
and in the synovium (P = 0.0005 and P = 0.002, 
respectively)

CD14 and CD163 presence in the synovial fluid is associated with osteophyte 
severity

Synovial fluid CD14 and serum CD163 associated with severity of joint 
space narrowing

Severity of self-reported knee joint symptoms associated with both synovial 
fluid (β = 0.773; P = 0.003) and serum (β = 0.641; P = 0.031) CD14 levels

71

CD11c+/CD206+ or CD86+/CD163+ ratio  
in synovial fluid

Associated with KL grading and severity of knee OA in patients 72

Mannose receptors MRC1 and MRC2 MRC1 and MRC2 recognize collagen, promoting its internalization  
and lysosomal degradation

Resulting improvement in collagen turnover restores ECM homeostasis  
in the joint and ameliorates cartilage destruction

Type II collagen helps to maintain expression of anti-inflammatory 
macrophage-related genes and pro-chondrogenic cytokines

77

SEPP1, FLOR2, STAB1, TXNIP and CD169 Gene expression profile is indicative of enhanced phagocytic activity  
and immunosuppressive activity, suggesting an immunoregulatory role

58

CCR2+ macrophages Present in human synovium

Invasive cells that are associated with cartilage erosion in OA

65

CCL3, CCL4, IL1B and TNF Pro-inflammatory macrophages 58

 FLS CD34−THY1+ FLS Less abundant in OA synovium than in RA synovium (8% versus 22% of cells, 
respectively)

Perivascular location, proliferative and secrete pro-inflammatory cytokines

Proportion of these FLS is correlated with synovitis and synovial hypertrophy 
assessed by ultrasonography

90

CD34−THY− FLS Located in synovial lining

Express the osteoblastic bone formation promoter BMP6 (involved  
in osteophyte formation)

More abundant in OA than in RA synovium

90

CADM1, COL8A2 and DKK3 Located in synovial lining

DKK3 is a strong inhibitor of cytokine-induced collagen loss

59,259

PTGDS, CXCL3, RSPO3, NRN1, NFKBIA, CXCL2, 
GEM, VCAM1, LIF, IL6 and INHBA

Associated with painful synovial sites in early OA 52

HSPA1A, DNAJB1, SLC39A8, HTRA3, ATF3, PTGIS 
and BNIP3

Associated with painful synovial sites in end-stage OA 52

ECM, extracellular matrix; FLS, fibroblast-like synoviocytes; KL, Kellgren and Lawrence; KOOS, Knee Injury and Osteoarthritis Outcome Score; OA, osteoarthritis; 
RA, rheumatoid arthritis; TNF, tumour necrosis factor.
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chondrocytes and synovial cells (related to cartilage 
destruction)99. Furthermore, conditional knockdown 
of Vegf attenuated injury-induced OA in mice and 
intra-articular anti-VEGF antibodies suppressed OA 
progression and blocked VEGF signalling, as revealed 
by reduced levels of phosphorylated VEGFR receptors 
in articular chondrocytes, synovial cells and dorsal root 
ganglia99. Indeed, oral administration of the VEGFR2 
kinase inhibitor vandetanib attenuated OA progression99.

Studies investigating the composition of the syn-
ovial membrane also reported the presence of T cells, 
including T helper (TH) 1 cells, TH2 cells, TH9 cells, TH17  
cells, TH22 cells, T regulatory (Treg) cells and cyto-
toxic T cells100, even in the earliest stages of disease101. 
Although a change in the profile of T cell subtypes was 
described to correlate with disease activity and pain102, 
the role of T cells in the development and progression of 
OA has yet to be determined100.

The presence of the varied cellular players in the 
synovial tissue might complicate histological evaluation 
of the OA synovium. As alteration in the equilibrium 
and interaction between these cell types shape OA pro-
gression and symptomatology, understanding of the  
mediators of this intricate network is therefore crucial.

OA risk factors and synovitis
Trauma
PTOA (Fig. 2) represents ~12% of all cases of sympto-
matic OA103. A study found that patients with a 3–10-year 
history of sport-related intra-articular knee injury 
developed OA104. Both animal and human studies have 

demonstrated that joint injuries (to menisci and lig-
aments, as well as intra-articular fractures) lead to the 
development of synovitis105–107. For example, data from 
the Osteoarthritis Initiative showed that injury was asso-
ciated with accelerated OA development, as assessed by 
KL grade108,109, whereas other studies found a higher 
incidence of OA in patients with joint injuries than in 
those without injuries110. As a surrogate of the presence 
of joint inflammation, pro-inflammatory cytokines, 
including IL-1β, IL-2, IL-6, IL-8, IL-12, IFNγ and TNF, 
as well as the cartilage-degrading markers MMP1, 
MMP3 and MMP9, are substantially elevated immedi-
ately after injury in the synovial fluid of patients with 
joint injuries111–114, and the elevated cytokine levels persist 
after bone healing115. As pro-inflammatory factors induce 
the production of cartilage-degrading enzymes, an asso-
ciation between synovial inflammation and PTOA is a 
prevalent hypothesis. However, in a study of 113 patients 
with acute anterior cruciate ligament injury, the levels 
of inflammatory mediators in the synovial fluid or the 
presence of moderate-to-severe Hoffa synovitis or of 
effusion synovitis at 2 years after anterior cruciate lig-
ament injury did not predict structural knee OA at the 
5-year follow-up116. More long-term longitudinal stud-
ies are needed to evaluate the contribution of synovial 
inflammation to the initiation and progression of PTOA.

Mechanical loading
Mechanical loading is essential for healthy joint main-
tenance. Nonetheless, aberrant excessive loading is a 
known OA risk factor117 and is thought to act through 

Table 2 | Risk factors and activators of synovial inflammation in OA

Risk factor or 
activator

Clinical relevance Ref.

Obesity Patients with obesity have a higher prevalence and severity of synovial inflammation 
assessed by conventional MRI

25

T2DM Higher rates of ultrasonography-detected synovitis and effusion in patients with T2DM 
with end-stage knee OA who underwent arthroplasty compared with patients without 
T2DM, independent of patient BMI

139

Metabolic 
endotoxaemia

The presence of LPS in both plasma and synovial fluid from patients with OA correlates 
with the presence of activated macrophages in the joint capsule and synovium, 
radiographic severity (by 99mTc-EC20 SPECT–CT), and total WOMAC score

158

Microbiome — 
increased intestinal 
permeability and 
endotoxaemia

Pro-inflammatory Streptococcus species are associated with higher effusion on  
MRI and WOMAC knee pain, independent of BMI

161

Senescent cells Positive correlation of the percentage of p16INK4A-expressing synoviocytes and IL-6 
concentration in the synovial fluid with the degree of synovitis at the site of biopsy

168

Bioactive lipids 11,12-DHET and 14,15-DHET levels are higher in OA knees versus unaffected knees of 
people with unilateral disease (P < 0.014 and P < 0.003, respectively) and are associated 
with radiographic progression over 3.3 years

180

HMGB1 HMGB1 levels in the synovial fluid higher in patients with KL 4 than in those with KL 2  
(P < 0.01) and KL 3 (P < 0.05)

184

Synovial fluid HMGB1 levels associated with the severity of synovitis and pain 185

HSP70 HSP70 levels higher in both serum and synovial fluid of individuals with knee OA than  
in healthy controls and both correlate with radiographic severity

189

MSU crystals MSU crystals in the joint are associated with increased synovial fluid concentrations of 
IL-1β (r2 = 0.34, P  < 0.0001) and IL-18 (r2 = 0.41, P < 0.0001), OA severity and radiographic 
progression, and osteophyte formation (P = 0.001 and P < 0.0001, respectively)

204

KL, Kellgren and Lawrence; LPS, lipopolysaccharide; MSU, monosodium urate; OA, osteoarthritis; SPECT, single-photon emission 
computed tomography; T2DM, type 2 diabetes mellitus; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
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several molecular pathways, including IL-1β, TNF, 
NF-κB, WNT, microRNA and oxidative stress signal-
ling pathways, which lead to chondrocyte apoptosis and 
ECM degradation118. However, excessive loading might 
also affect the synovium. For example, in vitro studies on 
FLS showed that mechanical loading induced the expres-
sion of several mediators involved in OA pathogenesis, 
such as prolyl-4-hydroxylase-α1 (P4HA1), collagen α2 
(I) chain (COL1A2), cyclooxygenase 2 (COX2) and IL-6 
(reF.119). In addition, similar studies in human monocytes 
revealed that mechanical loading, shear stress and com-
pression induce expression of nitric oxide synthase 2  
(NOS2), IL-12B, IL-6 and IL-8 (reF.120). Despite all this 
evidence suggesting that abnormal mechanical loading 
can facilitate the accumulation of inflammatory medi-
ators in the synovium, the exact mechanism by which 
aberrant or excessive mechanical loading induces  
synovitis is still unknown and might involve mul-
tiple cellular factors. Of interest, moderate phys-
ical activity has been proposed to modulate the 
immune response by priming circulating monocytes 
towards an anti-inflammatory macrophage-like dif-
ferentiation, mediated potentially by peroxisome 
proliferator-activated receptor-γ (PPARγ) signalling that 
implicates increased expression of CD36 (1.9 ± 1.5-fold) 
and liver X receptor-α (LXRα) (5.0 ± 4.7-fold) compared 
with sedentary individuals121. In a randomized con-
trolled trial in women with knee OA, physical activity 
increased total intra-articular and perisynovial concen-
tration of the anti-inflammatory cytokine IL-10 (reF.122),  

which is mainly produced by anti-inflammatory 
macrophages123 and has a chondroprotective role122.

Obesity and T2DM
Obesity is a well-known risk factor for both OA inci-
dence and progression124, and its role in OA develop-
ment is different according to sex and also depends on 
the affected joint125. Incidence of knee, hip and hand 
OA is higher in women126–128 than in men, and the  
prevalence of symptomatic OA is higher in women 
with obesity than in men with obesity2. The contribu-
tion of obesity to OA occurs not only through so-called 
mechanoinflammation but also through systemic 
low-grade inflammation or meta-inflammation, as 
obesity is linked to OA in weight-bearing joints such 
as the knees and in non-weight-bearing joints such as 
the hands129. The synovium of individuals with obesity 
displays marked fibrosis, increased macrophage infil-
tration and elevated expression of the Toll-like recep-
tor 4 (TLR4) gene, but reduced levels of adiponectin 
and PPARγ130. In addition, abundance of CD14+ and 
CD206+ macrophages is increased in the synovial tis-
sue of obese individuals130. Furthermore, the synovial 
fluid levels of the pro-inflammatory adipokine leptin 
are significantly higher in individuals with obesity than 
in those without obesity and correlate positively with 
BMI131. Finally, levels of mast-cell-produced β-tryptase 
in synovial fluid are also higher in individuals with 
obesity than in those without obesity132. Studies per-
formed in rat133 and rabbit134 models with diet-induced 
obesity and surgically induced OA also showed an 
increase in pro-inflammatory macrophages133 and the 
pro-inflammatory mediators IL-1β, IL-6 and TNF134 in 
the synovium, which promote OA. Some studies also 
report more pain in patients with obesity with OA135,136. 
FLS isolated from patients with obesity with hip OA 
who underwent joint replacement surgery secrete 
higher amounts of IL-6 than FLS from lean patients, 
which was enhanced by crosstalk with chondrocytes via 
leptin137. Although patients with obesity have a higher 
prevalence and severity of synovial inflammation, as 
assessed by conventional MRI25, improvement in knee 
pain in patients with obesity with >20% weight loss at 
1 year after dietary intervention or bariatric surgery 
was not mediated by a decrease in synovitis or bone 
marrow lesions (BMLs), as evaluated by MRI, but was 
partially explained by improvement in pressure pain 
threshold (at the patella and wrist) and depression 
score (CES-D)138. Furthermore, there was no noticeable 
improvement in BMLs (number and volume on MRI) or 
synovitis score after weight loss, which is in agreement 
with results of previous studies139,140. In fact, weight loss 
had no effect on synovial inflammation, evaluated by 
both static conventional MRI and dynamic CE-MRI, 
or on pain, evaluated by KOOS in a Danish study141. 
The fundamental reasons why obesity seems to facilitate 
synovitis but weight loss does not reverse this process 
are still unknown, although it is possible that obesity 
causes irreversible or long-lasting changes, such as epi-
genetic modifications or tissue structure alterations, 
which support OA progression even when individuals 
lose weight.

Box 1 | Imaging techniques for synovitis assessment

Magnetic resonance imaging
•	Two techniques: conventional MRI and contrast-enhanced MRI (Ce-MRI).

•	Signs of synovial inflammation in MRI scans include:

 - an increase in synovial membrane thickness and/or volume
 - enhanced signal intensity after intravenous gadolinium injection
 - the presence of effusion
 - alterations in the infrapatellar fat pad26,258

•	Conventional MRI is still the most frequently used technique in oa, despite being 
unable to distinguish between synovial hypertrophy and joint effusion

•	Synovial hypertrophy and joint effusion were correlated in a study that identified 
definite synovitis (synovial thickness ≥2 mm by Ce-MRI) in 96.3% of knees with  
an effusion259

•	a meta-analysis of 8 studies found that both Ce-MRI (6 studies) and conventional MRI 
(2 studies) findings of synovitis correlated with macroscopic (vascularity, hyperplasia 
and villi) and microscopic (inflammatory infiltrates, synovial lining cells number, 
oedema and fibrosis) histological features of inflammation260

Ultrasonography261,262

•	ultrasonography can assess and distinguish between synovial hypertrophy and  
joint effusion

•	Synovitis appears as thickening of the synovial membrane in grey scale (usually scored 
on a scale of 0–3)

•	Power Doppler ultrasonography can detect active synovial inflammation in oa  
(also scored on a scale of 0–3)

•	Power Doppler signal correlates with histologically confirmed inflammatory cell 
infiltrates, increased synovial lining layer thickness and increased vascularity

•	Power Doppler signal also correlates with MRI findings of synovitis (joint effusion:  
CI = 0.61; P < 0.001; synovial thickening: CI = 0.45; P = 0.01)263

These techniques could possibly be used to stratify patients with synovial inflammation 
who could benefit from specific anti-inflammatory treatments.
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Epidemiological studies show a higher prevalence 
of OA (radiographic and symptomatic) in patients with 
type 2 diabetes mellitus (T2DM) and a higher rate of 
arthroplasty142,143, with a meta-analysis reporting a 
higher risk of OA development in patients with T2DM 
than in those without T2DM (OR 1.46; 95% CI 1.08–
1.96; P = 0.01)144. Although some studies neither con-
firmed these findings after adjustment for BMI145,146 nor 
detected an association between T2DM and prevalence 
or incidence of OA147,148, some of the studies included 
in the meta-analysis reported the same increased risk 
after BMI adjustment, suggesting that T2DM is an 
independent risk factor for OA development143. For 
example, ultrasonography-detected synovitis and effu-
sion were higher in patients with T2DM and end-stage 
knee OA who underwent arthroplasty than in those 
without T2DM, independent of patient BMI143. Several 
reports have described the effect of hyperglycaemia on 
synovial inflammation. For example, synovial levels 
of the pro-inflammatory cytokine TNF were higher 
in obese patients with OA and T2DM than in those 
without T2DM149. FLS in patients with diabetes and 
obesity with OA are also insulin resistant, implying a 
diminished ability of insulin to decrease production of 
pro-inflammatory and catabolic mediators that contrib-
ute to OA development150. High glucose levels induce 
VEGF secretion and reactive oxygen species (ROS) pro-
duction in FLS in OA, increasing angiogenesis, tissue 
damage and inflammation151. Finally, both diabetes and 
ageing are associated with the accumulation of advanced 
glycated end-products, which induce an increase in 
proMMP1 secretion by FLS and in transcription of bone 
morphogenetic protein (BMP) genes that are involved in 
osteophyte formation152.

Diet and the gut microbiome
Although obesity is one of the most important modifi-
able risk factors to improve outcomes in OA, diet might 
have a role beyond weight control. A higher dietary 
inflammatory index score is associated with a higher 
prevalence of radiographic, symptomatic KOA, inde-
pendent of patient weight (OR 1.40; 95% CI 1.14–1.72; 
P = 0.002)153. Interestingly, a randomized controlled trial 
of vitamin D supplementation slowed the progression of  
effusion-synovitis volume increase154, supporting the 
premise that micronutrients might have an effect on 
chronic pain by modulation of intra-articular inflamma-
tion. A subsequent randomized controlled trial showed 
no effect of vitamin D supplementation on BML vol-
ume and synovitis155. In a randomized, controlled trial, 
Curcuma longa extract, a proposed anti-inflammatory 
natural product, was superior to placebo in controlling 
pain but had no effect on knee effusion-synovitis or car-
tilage damage156. The Mediterranean diet is also believed 
to have positive effects in patients with OA157, and epi-
demiological studies from the Osteoarthritis Initiative 
found that a western diet was associated with progres-
sion of OA (higher KL and WOMAC score)158, although 
no data on its effect on synovitis were provided.

Diet is one of the modifiable factors that influence 
the composition of the gut microbiome. As germ-free 
mice have reduced susceptibility to OA from DMM159, 

and microbial DNA signatures have been detected in the 
cartilage and synovial tissue of patients with OA160,161, 
interest in the role of the microbiome in OA develop-
ment and progression has increased. Western diets  
lack prebiotic-rich foods, in the form of dietary fibre, 
other complex carbohydrates and sugar alcohols pres-
ent in fruits, which might be beneficial in supporting 
a healthy microbiome. Microbial dysbiosis — adverse 
alterations of the gut microbiota composition — 
may favour metabolic syndrome and inflammation. 
Indeed, obesity is associated with a loss of beneficial 
Bifidobacterium species and an increased abundance 
of pro-inflammatory bacterial species, which might 
increase macrophage recruitment from the gut to the 
synovium and accelerate knee OA162.

The bacterial endotoxin lipopolysaccharide (LPS) is a 
known activator of synovial inflammation through TLR4 
(reF.163). Metabolic endotoxaemia (that is, the presence of 
bacterial products such as LPS in the blood) has been 
linked to changes in intestinal permeability induced by 
diet164 and has been described in patients with obesity 
and metabolic syndrome165. Interestingly, the presence 
of LPS in both plasma and synovial fluid from patients 
with OA correlates with the presence of activated mac-
rophages in the joint capsule and synovium, radio-
graphic severity (by 99mTc-EC20 SPECT–CT), and total 
WOMAC score163. Another study in individuals with 
knee OA found an association of the pro-inflammatory 
Streptococcus species with higher effusion (on MRI) and 
WOMAC knee pain, independent of BMI166. Whether 
changes in the gut microbiota that support inflammation 
are present in early stages of OA and are a contributing 
factor in OA radiographic or clinical progression or a 
consequence, possibly influenced by obesity, needs to 
be further examined.

Molecular mediators of synovitis in OA
Ageing and mitochondrial damage
Mitochondrial dysfunction (Fig. 3) is characterized by 
reduced mitochondrial integrity, including decreased 
mass, number and mitochondrial DNA (mtDNA) con-
tent, and impaired mitochondrial respiration, which 
increases ROS production167. Ageing is postulated to 
play a role in the mitochondrial dysfunction observed 
in OA. For example, mice that aged prematurely from 
accumulation of mtDNA mutations exhibited osteo-
penia, changes in epiphyseal trabecular bone and the 
subchondral cortical plate, and elevated numbers 
of hypertrophic chondrocytes in articular calcified 
cartilage168. Evaluation of mtDNA single nucleotide pol-
ymorphisms has defined mtDNA haplogroups as poten-
tial biomarkers for diagnosis or prognosis of OA169. In 
OA synoviocytes, the frequency of mtDNA mutations 
is substantially lower than in RA synoviocytes170, but 
complete characterization and larger population studies 
are needed to define the involvement of mtDNA muta-
tions in synoviocytes in OA development. Ageing has 
also been associated with chronic low-grade inflamma-
tion, which could promote OA development, although 
the exact mechanism of the ageing–inflammation 
link is still unknown3. Mitochondrial dysfunction and 
deficient ROS scavenging prolong the production of 
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pro-inflammatory cytokines (such as IL-1β and IL-6) 
and prevent the repolarization of macrophages from 
a pro-inflammatory to an anti-inflammatory pheno-
type in other tissues171, all of which could influence the  
development and progression of OA.

Senescent cells are a feature of various age-related 
pathological conditions, including OA. In particular, 
senescent chondrocytes in both PTOA and age-related 
OA accumulate mostly in the articular cartilage and syn-
ovium, and their elimination attenuates the development 
of OA, reduces pain and increases cartilage formation172. 
Several senescent-associated secretory phenotype factors 
are also inflammatory mediators, supporting the hypoth-
esis that senescent cells in OA synovium could play a 
role in initiating or maintaining synovial inflammation. 
Studies in ex vivo human OA knee specimens and in a 
surgically induced OA mouse model have detected senes-
cent synoviocytes in the OA synovium and demonstrated 
a positive correlation between the degree of synovitis at 
the biopsy site and the percentage of p16INK4A-expressing 
synoviocytes and levels of IL-6 in synovial fluid173. 
Together, these results suggest that ‘aged synovium’, indi-
cated by the presence of senescent cells, is associated 
with synovitis. Early-stage clinical studies with seno-
lytic agents are now underway, with results forthcoming 
(NCT04210986, NCT04770064 and NCT04815902).

Metabolites affecting the synovium
The OA synovium is a rich environment containing 
a wide variety of metabolites and soluble factors that  
contribute to both inflammation and cartilage damage174.

Nitric oxide. Synovial fluid from patients with OA con-
tains elevated levels of nitrite and the enzyme respon-
sible for nitric oxide (NO) production, inducible nitric 
oxide synthase (iNOS; encoded by NOS2)175. NO, which 
is mainly produced by chondrocytes in the OA joint176, 
mediates inflammatory mediator production, angio-
genesis and cartilage destruction177. Pro-inflammatory 
macrophages are also an important source of NO, 
through the metabolic rewiring of arginine metabolism 
towards NO and l -citrulline production70. Inhibition 
of iNOS dramatically reduces the production of cata-
bolic and pro-inflammatory factors and prevents OA 
development in dogs178. Although animal studies sup-
port the investigation of iNOS inhibitors as a potential 
disease-modifying intervention for OA, no successful 
clinical trials of these agents have been reported179.

Succinate. Pro-inflammatory macrophages exhibit a dys-
functional Krebs cycle that results in accumulation of suc-
cinate, which is shuttled from mitochondria to the cytosol 
to prevent hydroxylation and degradation of hypoxia 
inducible factor 1α (HIF1α), a key transcription factor 
involved in IL-1β production180. Although intracellular 
succinate supports the pro-inflammatory phenotype of 
macrophages, activation of succinate receptor 1 (SUCNR1; 
also known as GPR91) by soluble succinate boosts IL-4 
production181, a cytokine that induces macrophage polari-
zation towards an anti-inflammatory phenotype. However, 
succinate signalling through SUCNR1 in FLS links 
inflammation with fibrosis and angiogenesis and, indeed, 

exacerbates RA182. Despite these animal and in vitro data 
in RA, there are no studies investigating the relationship 
between succinate levels in the synovium and radiographic 
progression or clinical symptoms in OA. Indeed, the role 
of succinate and other intermediate metabolites in glycol-
ysis and the Krebs cycle in FLS in OA is still unknown, and 
additional metabolic and functional studies are needed to 
understand the phenotype of FLS in OA.

Prostaglandins and other bioactive lipids. Both IL-1β 
and IL-18 substantially increase the production of 
prostaglandin E2 (PGE2) in the synovium after artic-
ular cartilage damage183. In synovial fluid from patients 
with knee OA, the levels of IL-18 and PGE2 correlate 
greatly184. PGE2 is considered the major contributor 
to inflammatory pain in the OA joint. PGE2 signals 
through multiple receptors that are expressed differ-
entially in both peripheral sensory neurons and the 
spinal cord. Through the EP4 receptor, PGE2 has been 
proposed to participate in enhancing the production of 
aggrecanases and MMP13 induced by pro-inflammatory 
cytokines185. PGE2 also induces the expression of iNOS 
and IL-6, which further contributes to maintaining 
synovitis and increasing hyperalgesia. PGD2 is also 
enriched in synovial fluid from patients with OA186 
and has been suggested to potentiate nociception95.  
In a study that compared synovial fluid samples from  
112 knees of 102 individuals (of whom 58 had knee  
OA and 44 were healthy controls), including both affected  
and unaffected knees in those with unilateral OA, increa-
sed levels of PGD2, 11,12-dihydroxyeicosatrienoic acid  
(11,12-DHET) and 14,15-dihydroxyeicosatrienoic  
acid (14,15-DHET) were associated with the presence of 
OA186. The levels of 11,12-DHET and 14,15-DHET were 
higher in affected than in unaffected knees of people 
with unilateral OA (P < 0.014 and P  < 0.003, respectively) 
and were associated with radiographic progression over 
3.3 years of follow-up186.

DAMPs and alarmins
Excess mechanical stress or injury leads to the release 
of damage-associated molecular patterns (DAMPs), 
which interact with pattern recognition receptors 
(PRRs), including TLRs, receptor for advanced glycation 
end products (RAGE) and others to initiate the innate 
immune response and propagate inflammation. DAMPs 
implicated in OA are very heterogeneous and include 
cartilage fragments, ECM proteins, secreted intracellu-
lar proteins, plasma proteins and crystals (extensively 
reviewed elsewhere187,188).

High mobility group protein B1. HMGB1 is a non- 
histone nuclear protein that facilitates transcription 
factor and nucleosome stability. However, HMGB1 
acts as an endogenous danger signal and is released 
from cytokine-activated cells and damaged or dying 
cells supporting the inflammatory response189. In OA 
joints, HMGB1 is secreted by damaged and necrotic 
chondrocytes189. HMGB1 levels in synovium and 
synovial fluid are higher in patients with OA than in 
healthy controls190,191, and they are also higher in the 
synovial fluid of patients with KL 4 than in those with  
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KL 2 (P < 0.01) or KL 3 (P < 0.05)190. HMGB1 levels in 
synovial fluid have also been associated with the sever-
ity of synovitis, pain and daily activity reduction191. The 
therapeutic potential of HMGB1 neutralizing antibodies 
has been evaluated in the DMM mouse model, in which 
they showed cartilage protective effects192.

Heat shock proteins. Heat-shock proteins (HSPs) are 
induced by cellular stress to protect and maintain cellular 
integrity and function193. In OA synovium, HSP60, HSP70 
and HSP90 are the most abundant members of the HSP 
family194. HSP70 levels in serum and synovial fluid are 
higher in individuals with knee OA than in healthy con-
trols and correlate with radiographic disease severity195. 
In the DMM mouse model, overexpression of the HSP70 
family member HSPA1A abrogated cartilage erosion 
while having no effect on DMM-induced osteophyte  
formation or subchondral bone plate thickening196.

S100 protein family members. S100 proteins are intra-
cellular calcium-binding proteins that participate 
in regulating the cytoskeleton and cell migration188. 
S100A9 is strongly upregulated in inflamed synovial 
tissue197 and is involved in cartilage matrix degradation 
and osteophyte formation198. A study in 141 individu-
als with clinical knee OA showed that serum levels of 
S100A8 or S100A9 correlated with total WOMAC scores 
(P = 0.021), weight-bearing pain (P = 0.043) and physical 
dysfunction (P = 0.010)199. Similar results were obtained 
in 294 patients with hand OA200.

Other NLRP3 inflammasome activators
Evidence of the participation of the NLRP3 inflammas-
ome, a protein complex involved in processing and mat-
uration of IL-1β and IL-18, in OA onset and progression 
has led to this complex being proposed as a potential bio-
marker for OA diagnosis and patient classification201–203. 
Maturation of IL-1β and IL-18 is a two-step process. 
First, activation of NF-κB-dependent transcription of 
NLRP3 and IL1B204, p62 (also known as SQSTM1)205 and 
SLC44A1 (reF.206) among other genes, and de novo syn-
thesis of mtDNA207. Second, the assembly of the NLRP3 
inflammasome, activation of caspase 1 and processing 
of pro-IL-1β and pro-IL-18 to mature cytokines204. In 
the OA synovium, ectopic deposition of hydroxyapatite 
crystals, calcium pyrophosphate dihydrate microcrys-
tals and monosodium urate crystals, and ATP released 
from dying cells are detected by macrophages and trigger 
NLRP3 inflammasome activation and IL-1β and IL-18 
production208,209. Of note, monosodium urate crystals 
in the joint are associated with increased synovial fluid 
levels of IL-1β (r2 = 0.34, P < 0.0001) and IL-18 (r2 = 0.41, 
P < 0.0001), OA severity and radiographic progression 
(P = 0.001), and osteophyte formation (P < 0.0001)210. 
IL-1β induced chondrocyte catabolism, increased MMP 
and ADAMTS5 activity and suppressed proteoglycan 
synthesis183. The pathogenetic role of IL-1β in OA syn-
ovium might also be due in part to the lack of production 
of the natural IL-1β antagonist IL-1 receptor antagonist 
(IL-1Ra) by OA chondrocytes58. Preclinical studies 
using recombinant IL-1Ra (anakinra) demonstrated a 
strong protection in OA animal models by improving 

lubricin expression, preserving cartilage integrity and 
reducing synovial hyperplasia and inflammatory cell 
infiltration211. Furthermore, in an exploratory analysis  
of a randomized controlled trial for the prevention of car-
diovascular events, canakinumab (anti-IL-1β) treatment 
was associated with a lower incidence of hip and knee 
replacement than placebo212,213, although in a rando mized 
controlled trial, intra-articular injection of anakinra did 
not improve OA symptoms compared with placebo214. 
These disparate outcomes have resulted in a lack of 
consensus regarding the use of IL-1 signalling therapy  
for OA, concluding that inhibiting the actions of IL-1β 
alone is not enough to block OA pathogenesis. In this 
sense, NLRP3 inflammasome inhibitors, which block 
not only the production of IL-1β but also that of IL-18 
and active caspase 1, might be a more potent interven-
tion. In the OA synovium, IL-18 promotes chondrocyte 
proliferation and expression of COX2, iNOS and MMPs, 
and boosts IL-6 production, further supporting a pro- 
catabolic environment215. Importantly, active caspase 1  
also cleaves gasdermin D, releasing the active amino 
terminal portion that has pyroptotic activity (by pore 
formation), which could contribute to maintaining  
persistent inflammation within the synovium216.

Complement
Complement factors are highly expressed in the main 
tissues involved in OA, including cartilage, bone and 
synovium, in patients with OA compared with in healthy 
controls217,218. Furthermore, expression of complement 
effectors is higher and that of complement inhibitors 
is lower in the synovium of patients with OA than in 
healthy donors217. In addition, C5 and C6 deficiency 
are protective against the development of synovitis and 
cartilage damage in animal models of OA, and com-
plement activation is associated with increased pro-
duction of ECM-degrading proteins and inflammatory 
mediators217. These data suggest a role for complement 
activation not only in synovitis but also in the develop-
ment and progression of OA, and it could therefore  
represent a potential therapeutic target.

Cellular interplay in OA synovium
Interactions between synoviocytes, chondrocytes 
and osteocytes
In a healthy joint, chondrocytes balance the synthesis 
and breakdown of the cartilaginous matrix to ensure 
correct distribution of load across the joint, thereby 
reducing friction. Both non-mechanical and mechanical 
factors contribute to OA development, which involves 
a shift in chondrocyte metabolism to increased prote-
olytic activity and inflammation and cartilage degra-
dation. Direct and indirect communication between 
chondrocytes and synoviocytes is thought to contribute 
to maintaining anabolic and catabolic responses of each 
cell type219 (Fig. 3). In the inflamed joint, chondrocytes 
and synoviocytes mutually induce alterations in their 
transcription programme to favour the production of 
MMPs220. Cartilage fragments, aggrecan, fibronectin and 
other DAMPs are sensed by synoviocytes to shift their 
transcriptomic profile towards chronic inflammatory 
responses, including cytokine, NLRP3 inflammasome, 
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hypoxia, scavenger receptor and TLR, and integrin 
pathways221. Importantly, the array of upregulated genes 
related to maintenance of an inflammatory phenotype 
are under control of transcription factors that support 
synovitis, including ATF2, STAT3 and NFKB1 (reF.221). 
Cartilage fragments can also induce inflammatory 
responses in synoviocytes by reorganization of the actin 
cytoskeleton, enhanced production of NO and PGE2 
and increased deposition of collagen222 (Fig. 4).

Synovitis can coexist with BML and both can precede 
the development of radiographic OA223,224. Although it 
is thought that BMLs result from excessive mechanical 
loading, it is not known whether synovitis contributes to 
subchondral bone pathology225, other than by invasion 
of subchondral bone by pannus-like tissue in the medial 
compartment226 without producing the marginal ero-
sions typically seen in RA227. The temporal relationship 
between the synovitis and BMLs is still not known. In a 
study in patients with end-stage OA before joint replace-
ment, histologically assessed synovitis correlated mode-
rately with the presence of subchondral cysts by MRI 
(r = 0.350; P = 0.03)228. However, a subsequent analysis of 
the contribution of different OA pathological processes to  
pain found no association between subchondral patho-
logy and synovitis, suggesting that subchondral 
pathology is associated with knee pain independently 
of cartilage and synovial pathology229.

Synovitis is also associated with osteophyte forma-
tion. Hoffa synovitis is significantly associated with 
osteophyte development in both anterior (P = 0.013, 
adjusted OR 1.12, 95% CI 1.03–1.23) and medial 
(P = 0.000, adjusted OR 1.21, 95% CI 1.11–1.31) lesions 
of the tibia230. In support of the association between 
Hoffa synovitis and osteophyte development, depletion 
of macrophages in the collagenase-induced OA model 
strongly reduced the formation of osteophytes and 
fibrosis231,232. Macrophages, which together with FLS are 
the main source of TGFβ in the synovium, contribute 
to the stimulation of bone formation and production of 

proteoglycan and type II collagen, and enhance chon-
drogenesis. TGFβ and the related proteins BMP2 and 
BMP4 are essential growth factors implicated in oste-
ophyte formation233 and pathological type I collagen 
deposition during fibrosis234.

Although the relationship between synovitis and 
OA structural progression is better defined, the role 
of synovial inflammation in OA pain is not com-
pletely understood (box 2). Treatment with antibodies 
against granulocyte–macrophage colony-stimulating 
factor (GM-CSF), which signals in both the immune 
and nervous systems, has an analgesic effect in OA 
without affecting synovitis scores235. Indeed, the num-
ber of GM-CSF- and GM-CSFRα-expressing cells  
per mm2 synovial sub-lining correlated negatively with 
knee pain235, reinforcing the idea that synovitis and pain  
are not always associated. Research in OA-related  
pain has also focused on nerve growth factor (NGF)236, 
which is a neurotrophin that activates nociceptive neu-
rons to transmit pain signals from the periphery to 
the central nervous system. NGF is expressed by FLS 
and macrophages in the synovium237 and by subchon-
dral mononuclear cells, osteoclasts and chondrocytes 
in the cartilage from patients with knee OA229. Other 
studies suggest that symptomatic OA is associated with 
upregulation of MMP1 in the synovium and downreg-
ulation of IL-1R1 and VEGF compared with the levels 
of these molecules in individuals with asymptomatic 
chondropathy with similar macroscopic joint surface 
appearances who did not seek total knee replacement18. 
IL-1β signals through its receptor IL-1R1 and induces 
the expression and release of MMP1 by FLS. After 
IL-1–IL-1R1 engagement, IL-1R1 is downregulated, 
which may explain why therapy with an IL-1R1 antag-
onist failed in clinical trials238. Angiogenesis in the 
subchondral bone has been postulated as the initial 
event in OA pain, as the blood vessels supply nutrients 
for axonal growth and neo-innervation of the osteo-
chondral junction, likely driven by NGF released from 
basal articular chondrocytes239. The synovium then con-
tributes to pain by secreting pro-inflammatory factors, 
such as TRKB (the receptor for brain-derived growth 
factor), CCL14 and ADAMTS15, angiotensinogen, 
angiotensin-converting enzyme, netrin 1, CCL2 and 
CCL8 (reFs18,237,240), either independently or amplifying 
the process already initiated by NGF.

Interactions between synovial tissue and the 
infrapatellar fat pad
Fibrosis may contribute to joint stiffness and pain, 
which are the main symptoms in OA, but most of the 
clinical studies relate to postoperative synovial fibrosis. 
Intra-articular fibrosis can be detected by using MRI 
scans with advanced metal suppression and with gad-
olinium contrast241 in patients with stiff and painful 
arthroplasty. Patients with diagnosed fibrosis242 exhibit 
thicker tissue (4.4 mm ± 0.2 mm) than patients with 
a non-fibrotic phenotype (2.5 mm ± 0.4 mm) after 
total knee arthroplasty (1.9 mm ± 0.2 mm; P < 0.05)241.  
A promising fibroblast radiotracer for PET, 18F-labelled 
glycosylated FAPI, demonstrated highly specific 
uptake in bone structures and joints243 and could aid in 

Box 2 | Gaps in and proposed agenda for synovitis research in OA

Research gap
To date, the fundamental mechanisms underlying the crosstalk between synovitis and 
clinical symptoms of osteoarthritis (oa) are not completely identified. Current studies 
describe histological and molecular characteristics at end-stage oa using imaging but 
do not capture change over time.

Proposed research agenda
longitudinal studies that combine cellular and molecular evaluation in combination 
with histology and imaging at different stages of oa to establish mechanistic links with 
clinical oa progression.

Research gap
Current imaging techniques cannot capture all histological features of the oa synovium.

Proposed research agenda
optimization of imaging, including MRI, functional imaging and positron emission 
tomography to capture the different histological patterns and phenotype subsets  
in oa.

Research gap
Defining phenotypes that capture the heterogeneous features of oa synovitis.

Proposed research agenda
Personalized medicine for patients with oa by defining phenotypes of oa that capture 
the inflammatory subtypes through advanced imaging.
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improving understanding of the role of fibroblasts and 
fibrosis in OA and whether or not fibrosis in the synovial 
tissue contributes to joint pain.

The exact mechanism by which fibrosis occurs in OA 
synovium is still not entirely clear. It is generally accepted 
that there is more inflammation, with an increased num-
ber of macrophages and T cells in the lining layer, in early 
OA than in advanced OA, in which inflammation and 
fibrosis coexist48,244. These observations suggest that 
the progression of OA is accompanied by a transition 
from an inflammatory phase to a fibrotic stage and that 
factors that initiate fibrosis might be induced during 
synovitis. Several factors that are increased in inflamed 
OA joints are associated with fibrosis, including TGFβ, 
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 
(PLOD2), tissue inhibitor of metalloproteinase 1 
(TIMP1), connective tissue growth factor (CTGF), dis-
integrin and metalloproteinase domain-containing pro-
tein 12 (ADAM12) and prostaglandin F2a. For example, 
ADAM12 mRNA and protein levels in synovium cor-
relate with the severity of histological synovitis244. Both 
PLOD2 and TIMP1 have been directly implicated in syn-
ovial fibrosis and are elevated in the synovium of patients 
with end-stage OA and mice with experimental OA245.

Another compartment that is involved in the devel-
opment of synovial fibrosis is the IFP, which is located 
below the kneecap between the joint capsule and the 
synovial membrane, protects the knee from mechanical 
stress and provides a vascular supply. However, during  
OA development and progression the IFP also under-
goes structural changes characterized by increased fibro-
sis and neovascularization, lymphocyte infiltration in the 
interlobular septum and smaller fat lobules246–248. Of note,  
individuals who develop AKOA are more likely to have 
altered signal intensity in the IFP (30%) than those with 
no knee OA at 2 years prior to the index visit (OR 2.07, 
95% CI 1.14–3.78), and these odds increase twofold at 
1 year prior to disease onset and for the next 3 years249. 
The infiltration of immune cells and increased fibrosis 
cause the disappearance of adipocytes in the parenchy-
mal region of the IFP250. Part of the contribution of the 
IFP to synovial fibrosis is mediated by the activation of 
FLS: PLOD2 expression and collagen production by FLS 
increases sixfold and 1.8-fold respectively when FLS are 
co-cultured with fat-conditioned medium from the IFP 
of patients with OA247. Furthermore, collagen produc-
tion by FLS correlated with increased levels of prosta-
glandin F2a in the fat-conditioned medium, whereas 
no correlation with TGFβ amounts was observed247. In 
addition, IFP tissue in obese individuals shows increased 
expression of genes associated with fibrosis and ECM 
production, but no change in adipocyte size, inflam-
matory cell infiltration, macrophage polarization, for-
mation of crown-like structures, or expression of genes 
encoding inflammatory cytokines and chemokines251. 

In another study, IFP volume was not associated with 
BMI252. However, macrophages in the IFP from patients 
with obesity with knee OA were positive for the surface 
markers CD206 and CD163 (~80% and 40% of all CD14+ 
macrophages, respectively), and these macrophages 
produce IL-6 and TNF but not much IL-10; of note, 
none of these features correlated with BMI252. Animal 
models of OA also showed an association between syn-
ovitis, changes in macrophage polarization (including 
enrichment of pro-inflammatory macrophage pheno-
type or increased crown-like structures), and fibrosis 
in both synovial tissue and the IFP, and treatment that 
decreased inflammation was associated with changes in 
macrophage phenotypes and attenuation of fibrosis251–253. 
Although all these studies showed some contribution of 
IFP dysfunction to joint inflammation and fibrosis, the 
mediators of these interactions remain unknown.

Of interest, TGFβ has been proposed as a nexus 
between fibrosis and pain in OA. In a study of patients 
with radiographic KL grade 3–4 after total knee arthro-
plasty, NGF expression in synovial tissue correlated 
positively with TGFβ expression (P < 0.001) while show-
ing no association with levels of the pro-inflammatory 
cytokines IL-1β and TNF (P = 0.576 and P = 0.616, respec-
tively). Both TGFβ and NGF colocalized in the lining 
layer, mainly in the CD45−CD90+ fibroblast population 
(86.3% of analysed cells in the synovial tissue)254. Similar 
to findings in articular cartilage255, TGFβ–ALK5 signal-
ling mediates NGF production through the TAK1–p38  
pathway in the synovium of patients with knee OA254.

Conclusions
OA is a complex disease in which symptoms and joint 
function are often dissociated from structural damage. 
In an effort to identify pathobiological mechanisms in 
OA, the OA community is intensely investigating syn-
ovial inflammation. Consequently, we now know more 
about the cellular and molecular players in synovitis, 
although more in-depth studies are needed to evalu-
ate the association of these factors with radiographic 
progression and contribution to OA symptoms at both 
early and late stages of disease. Hurdles to be overcome 
might include the heterogeneous nature of the OA syn-
ovium and the complex network of interactions that are 
involved in synovial inflammation, fibrosis and carti-
lage damage, processes that often cannot be completely 
dissociated and evaluated using current imaging tech-
niques. Research advances in phenotype-specific treat-
ment options have provided several novel therapies that 
could target the inflammatory component of OA256,257. 
However, further research is needed to determine 
whether synovial inflammation is relevant for diagnosis, 
risk stratification or identification of therapeutic targets.
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Systemic sclerosis (SSc) is a multisystem connective- 
tissue disease characterized by fibrosis, and by vascu-
lar and immunological abnormalities. The two main 
subtypes of SSc, defined according to the extent of skin 
involvement (scleroderma, meaning ‘hard skin’), are 
diffuse cutaneous SSc (dcSSc) and limited cutaneous 
SSc1. dcSSc is the subtype of greater concern, because 
it is characterized by rapid progression and a high prev-
alence of early internal-organ involvement (including 
lung, heart and kidney), which can be life-threatening. 
dcSSc is therefore associated with high mortality2–4, 
with a 5-year survival rate of around 70%, and clini-
cians understandably tend to focus their attention on 
early identification and treatment of internal-organ dis-
ease. However, on a day-to-day basis, in patients with 
early dcSSc (those within the first 3–5 years of the onset 
of symptoms), it is skin thickening that has the greatest 
impact on quality of life, causing pain, intractable itching 
and functional limitation.

Skin involvement in early dcSSc is an important 
topic, not only because of the effects of skin disease on 
the patient, but also because the skin is a very visible 
and accessible ‘window’ into the dcSSc disease process. 
Therefore, examining the skin enables the prediction 
and monitoring of disease progression and of treatment 

response. A Review of this topic is timely because of 
developments over the past 5 years in benchmarking  
of the burden of skin disease in patients with dcSSc 
and in understanding of how to identify ‘progressors’ 
(patients with progressive disease), not only on the 
basis of clinical features, but also through advances in 
molecular technologies applied to skin biopsy samples. 
In addition, controversies exist with regard to how best 
to measure the extent and consequences of skin disease, 
as highlighted by results from clinical trials, and there is 
an ongoing need to promote best-practice management 
of skin disease, as well as of internal-organ disease.

The aim of this Review is to provide a comprehen-
sive description of the clinical and scientific implications 
of skin involvement in dcSSc. First, we describe skin 
involvement, patterns of progression and the associated 
clinical burden, including contractures and ulceration. 
Second, we outline how skin-disease progression can be 
predicted by consideration of clinical features (including 
disease duration, extent of skin disease and autoantibody 
status) and potentially by gene-expression profiling of 
biopsied skin. Identifying progressors is especially rel-
evant now that autologous haematopoietic stem-cell 
transplantation (HSCT) is an option for patients at high 
risk of progression, so that only those patients most in 

Contractures
Deformities resulting  
from tissue shortening or 
hardening; in patients with SSc 
contracture is caused by 
tightening of the skin.
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cutaneous systemic sclerosis:  
an unmet clinical need
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Abstract | Diffuse cutaneous systemic sclerosis (dcSSc) is associated with high mortality resulting 
from early internal-organ involvement. Clinicians therefore tend to focus on early diagnosis and 
treatment of potentially life-threatening cardiorespiratory and renal disease. However, the rapidly 
progressive painful, itchy skin tightening that characterizes dcSSc is the symptom that has the 
greatest effect on patients’ quality of life, and there is currently no effective disease-modifying 
treatment for it. Considerable advances have been made in predicting the extent and rate of 
skin-disease progression (which vary between patients), including the development of techniques 
such as molecular analysis of skin biopsy samples. Risk stratification for progressive skin disease  
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need are exposed to the potential toxicity (and even 
lethality) of HSCT. Third, we discuss outcome measures 
of skin disease, specifically the modified Rodnan skin 
score (mRSS), but also patient-reported outcome meas-
ures and non-invasive imaging techniques. Fourth, we 
describe best-practice management, including general 
measures, immunosuppressant treatment and HSCT, 
and discuss the controversial topic of whether or not 
glucocorticoids should be prescribed. We do not dis-
cuss recent, ongoing or proposed studies of new targeted 
therapies (including biologic agents such as tocilizumab 
and rituximab), as these have been reviewed elsewhere5. 
However, the information we present reinforces that 
patients with early dcSSc should, whenever possible, be 
recruited into clinical trials, to maximize the chances of 
identifying an effective disease-modifying therapy for 
this currently incurable disease.

Clinical features and disease burden
Clinical features
In patients with early dcSSc, skin involvement com-
mences distally, usually first affecting the fingers, which 
often become swollen and painful. This early oedema-
tous phase is sometimes misdiagnosed as inflammatory 
arthritis and can be associated with carpal tunnel syn-
drome, but over a few weeks the skin hardens and the 
diagnosis of SSc usually becomes obvious. A defining 
feature of the dcSSc subtype is the (often rapid) progres-
sion of skin involvement to proximal to the elbow or knee 
and/or involving the trunk. Conversely, in limited cuta-
neous SSc, skin involvement is confined to the extrem-
ities (distal to the elbows and knees) and to the face  
and neck6.

During the early (inflammatory) phase of dcSSc, 
when the skin disease is progressing, the skin is often 
itchy and painful. Pigmentary change can occur7,8 and 
can be distressing to patients, especially those with 
darker skins. Skin tightening commonly leads to con-
tractures, particularly fixed flexion deformities of 
the fingers9 (Fig. 1a), but also of the elbows and some-
times knees. Range of movement is often substantially 
reduced, for example, at the shoulder or at the ankle, 
subtalar and mid-tarsal joints. The flexion contractures 
predispose to overlying ulcers, which can be refractory to 

treatment and which can lead to underlying osteomyeli-
tis. Rarely, the skin is so tightened that small superficial 
ulcers appear, unrelated to pressure points (Fig. 1b).

Itch, which is often described as the most trouble-
some skin symptom of early dcSSc, resolves when the 
early inflammatory phase subsides. In those patients 
who survive, the severity of the skin disease (as assessed 
by the mRSS) will generally plateau (usually within  
3–5 years of onset)10, followed by gradual softening and 
atrophying of the skin, to the extent that years later, 
there might no longer be any skin thickening. The con-
tractures, however, persist and are usually irreversible9 
(Fig. 1c).

Associated morbidity
Although it has long been recognized that the skin 
involvement in early dcSSc is painful, disabling and 
disfiguring, these elements of the disease burden have 
only been quantified in the past few years. The European 
Scleroderma Observational Study (ESOS)11 involved 
326 patients with early dcSSc from 19 countries (with 
a median disease duration from onset of skin thicken-
ing of 11.9 months), and although the main aim was 
to assess treatment outcomes, ESOS also provided the 
opportunity to examine associations between severity of 
skin involvement and both functional ability and qual-
ity of life. Severity of skin involvement was measured 
with the mRSS. At the baseline visit, high mRSS was 
associated with high levels of disability (with ‘grip’ and 
‘activity’ being most affected) as assessed by the Health 
Assessment Questionnaire disability index (HAQ-DI) 
(Spearman’s ρ = 0.34, P < 0.0001), and specifically with 
high levels of hand disability, as assessed by the Cochin 
Hand Function Scale (ρ = 0.35, P < 0.0001)12. Fine finger 
movements were particularly affected. mRSS was also 
associated with severity of pain, as assessed on a 0–100 
visual analogue scale (ρ = 0.17, P = 0.002), and severity 
of fatigue, as assessed by the Functional Assessment of  
Chronic Illness Therapy fatigue score (ρ = −0.20, 
P = 0.0005). Examining changes over 12 months, 
increases in the mRSS were associated with worsening 
disability as measured by HAQ-DI (ρ = 0.40, P < 0.0001). 
In summary, ESOS demonstrated that the greater the 
degree of skin thickening, the greater the disability (with 
an emphasis on hand disability), pain and fatigue, and 
that if skin thickening progresses then so too does dis-
ability. This association in early dcSSc has since been 
confirmed in other studies: in a single-centre retrospec-
tive study13, an increase in mRSS was associated with 
worsening disability as measured by HAQ-DI in the sub-
group of patients with early dcSSc (ρ = 0.36, P = 0.004), 
and in a study of 154 patients from Canada with early 
dcSSc14, changes in mRSS correlated with changes in 
HAQ-DI (Pearson’s r = 0.43 for 1-year data, r = 0.41 for 
2-year data).

Predicting progression of skin disease
Associations with skin-disease severity
Among patients with early dcSSc, various trajectories of 
skin involvement are observed: skin score can progress 
(sometimes rapidly), stabilize or improve. An important 
aim is to identify those patients with progressive skin 

Key points

•	Much of the pain and disability of early diffuse cutaneous systemic sclerosis (dcSSc) 
results from skin thickening (scleroderma), which can be rapidly progressive, 
commencing distally then extending proximally.

•	‘Progressors’ in terms of skin disease can now be identified by considering disease 
duration, extent of skin disease, autoantibody status and (potentially) gene-expression 
profiling of skin biopsy specimens.

•	Improvement in the ability to predict progressive skin disease will inform the selection 
of patients for haematopoietic stem-cell transplantation, as well as more targeted 
inclusion of patients in clinical trials.

•	limitations of the modified Rodnan skin score are stimulating development of other 
outcome measures of skin disease, including patient-reported outcome measures, 
non-invasive imaging methods and composite scores.

•	Best-practice management of early dcSSc includes early referral to a specialist centre, 
pain management, multidisciplinary input, immunosuppressive therapy and, when at 
all possible, inclusion in a clinical trial.

Ulcers
Skin lesions with discernible 
depth and loss of the 
epithelium.
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involvement, not only because it is painful and disabling, 
but also because extensive and/or progressive skin dis-
ease portends a poor outcome. Survival is reduced in 
patients with high skin scores15–17. A high ‘skin-thickness 
progression rate’ (the mRSS at first visit divided by 
patient-reported duration of skin thickening) is a pre-
dictor of early mortality and of scleroderma renal crisis18. 
Researchers who conducted an analysis of the European 
Scleroderma Trials and Research (EUSTAR) data-
base identified reduced survival of progressors among 
patients with dcSSc: a group of 78 ‘skin progressors’ 
had lower survival (and more decline in lung function) 
than 943 ‘non-progressors’19. Conversely, a reduction 
in skin thickening is reassuring, because it is associ-
ated with improvement in survival20 and reduction of 
internal-organ involvement21.

Predictors of progression
Accurate prediction of progressive skin involvement 
would enable clinicians to make informed decisions 
regarding whether or not to initiate potentially toxic 
treatments, usually an immunosuppressant but poten-
tially (in highly selected patients) HSCT. Although 
treatment-related mortality with HSCT has fallen con-
siderably since the introduction of the technique, it 
remains a concern, so the procedure should only be car-
ried out in those at highest risk. Prediction of progressive 
skin disease is also important for researchers designing 
clinical trials of potential disease-modifying therapies; 
inclusion and exclusion criteria should be selected to 
include progressors rather than non-progressors, who 
are less likely to benefit from treatment. Progressors are 
often defined as those experiencing a 5-unit and 25% 
increase in mRSS over 12 months22–24.

Tendon friction rubs are an indicator of disease that 
is very likely to progress25,26. In a study of an inception 
cohort from the University of Pittsburgh (reported in 
2011)18, anti-RNA polymerase III antibody positivity 
was associated with rapid skin-disease progression. 
More recently, several groups have investigated other 

predictors of progressive skin disease. Low mRSS, short 
disease duration and joint synovitis were predictors  
of disease progression in an analysis from the EUSTAR 
database22, whereas a high baseline mRSS (and absence 
of friction rubs) predicted improvement27. These results  
led to the suggestion that only patients with an mRSS 
of ≤22 should be included in clinical trials of early 
dcSSc, because patients with higher scores are unlikely 
to have progressive skin disease22. This fairly stringent 
cut-off excludes many patients. An analysis of the ESOS 
cohort23, in whom mRSS was assessed at 3-month  
intervals (enabling detailed assessment of disease tra-
jectory), demonstrated that patients with higher skin 
scores could reasonably be included in clinical trials if 
their disease duration was short. Among the 293 patients  
with sufficient data to assess their status, the 66 pro-
gressors had shorter disease duration than the 227 
non-progressors (median 8.1 months versus 12.6 months,  
P = 0.001), as well as lower mRSS (median 19 units ver-
sus 21 units, P = 0.030), with those patients who were 
anti-RNA polymerase III antibody positive going on 
to have the highest skin scores and peaking earliest. 
Two predictive models were derived for progressive 
skin thickening23: the first included mRSS, duration 
of skin thickening and their interaction, and the sec-
ond added anti-RNA polymerase III antibody posi-
tivity. Both models were more accurate than a model 
with an mRSS cut-off of 22, and for a given skin  
score were more flexible, enabling a higher baseline 
skin score to be compensated for by a shorter disease 
duration23. Application of these models should maximize 
numbers of the most informative patients (progressors) 
to be included in clinical trials. Subsequently, results 
from other studies have confirmed the role of skin 
score and disease duration as predictors of progression.  
A 2021 analysis from the Pittsburgh cohort28 led to the 
conclusion that ideally only patients with a disease dura-
tion of <18 months should be included in clinical trials, 
although the findings from ESOS23 suggest that some 
flexibility in disease duration could be permitted in the 

a b c

Fig. 1 | Skin involvement in diffuse cutaneous systemic sclerosis. a | Flexion contractures of the fingers in early diffuse 
cutaneous systemic sclerosis (dcSSc). b | Superficial cutaneous ulceration in early dcSSc. c | Late-stage dcSSc with 
persisting contracture (note the scar from carpal tunnel decompression, performed soon after the onset of symptoms  
of dcSSc). Images copyright of Northern Care Alliance NHS Foundation Trust.

Scleroderma renal crisis
A complication of SSc that 
involves sudden onset of 
hypertension accompanied  
by renal failure.

Tendon friction rubs
Palpable rubs that are found, 
for example, over wrists, ankles 
and knees, and are thought  
to result from inflammatory 
change in the tenosynovium.
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presence of low skin scores. Findings from the Genetics 
versus Environment in Scleroderma Outcomes Study 
(GENISOS)24 cohort suggested that an mRSS of ≤27 
was predictive of progression, despite a mean disease 
duration of 2.4 ± 1.5 years (which is longer than the dis-
ease duration of the ESOS cohort23). In a Japanese multi-
centre prospective cohort study29, disease duration of 
≤12 months and an mRSS of ≤19 predicted progression 
(sensitivity 73.9%, specificity 81.1%), which is consistent 
with the findings from ESOS23.

Results from skin global gene-expression studies 
indicate that SSc skin has a distinct transcript profile 
(although considerable heterogeneity exists). Although 
these results demonstrate the presence of promi-
nent fibrotic and inflammatory signatures (which can 
co-occur in individual patients), a subgroup of SSc skin 
samples has a gene-expression pattern that resembles the 
transcript profile of healthy individuals (a ‘normal-like’ 
pattern)30–32. In addition, evidence increasingly indi-
cates that the skin gene-expression profile of a patient 
with SSc changes over time, in parallel with the clinical 
course of skin involvement31,33. SSc skin gene-expression 
signatures might help to predict outcomes of dcSSc. 
Higher ‘fibroinflammatory’ scores are associated with 
higher skin scores (both mRSS and locally at the biopsy 
site)30. Results from a study of the Prospective Registry 
of Early Systemic Sclerosis (PRESS) cohort, published in 
2020, suggest that gene-expression profiles in samples 
from forearm skin biopsies of patients with early dcSSc  
are associated with prior skin-disease progression, but are  
not predictive of future progression31. These findings 
contrast with those from a phase 2 trial of tocilizumab, 
in which expression of five fibrotic and inflammatory 
genes in forearm skin biopsy samples from patients 
treated with a placebo was associated with mRSS 
progression34. Inflammatory, fibroproliferative and 
normal-like skin gene-expression subsets were identified 
using a machine-learning approach32, and might help to  
explain the variable response to immunomodulatory 
therapies. In a randomized controlled study of treat-
ment with abatacept in dcSSc, the results of which 
were published in 2020, patients with the inflamma-
tory or normal-like expression profiles responded to 
treatment, whereas no statistically significant treat-
ment effect occurred in the overall study population35. 
Results from other studies (published from 2018 to 2021) 
have indicated that patients with an inflammatory skin 
gene-expression profile have shorter disease duration and 
higher skin score than individuals with other expression 
profiles31,36,37. Consistent with these findings, results pub-
lished in 2021 from a longitudinal study indicated that 
immune cell and fibroblast signatures decline over time, 
and overall skin gene expression trends towards normal-
ization in patients with early diffuse SSc33. Currently, it 
is not known to what extent skin gene-expression 
profiling can help to predict response to treatment 
beyond the information provided by easily obtained 
clinical predictors such as disease duration, baseline 
skin score and anti-RNA polymerase III antibody  
positivity status. Anti-RNA polymerase III antibody is 
one of the SSc-specific autoantibodies that are associ-
ated with the diffuse cutaneous subtype of SSc, another 

is anti-topoisomerase I antibody11. As mentioned above, 
patients with dcSSc with anti-RNA polymerase III  
positivity experience more rapidly progressive skin 
involvement than the overall population of patients 
with dcSSc11. Notably, differences in gene expression 
and pathway enrichment between major autoantibody 
subgroups in early dcSSc38 might reflect both distinct 
and overlapping biological mechanisms determining 
progression and regression of skin disease at the patient 
level. Integration of high-dimensional gene and pro-
tein expression data by weighted gene co-expression 
network analysis (WGCNA) elucidates likely patho-
genic mechanisms39 and points towards the potential to  
better define longitudinal differences to link gene33 and 
protein expression to clinical changes (Fig. 2). This analysis 
should provide additional insights into local pathogenesis 
of skin fibrosis39, and might help to identify candidate 
biomarkers that can be used for inpatient stratification or 
assessment of outcome, building upon results from stud-
ies of biomarkers validated in conditions such as liver cir-
rhosis, including the enhanced liver fibrosis score, which 
correlates with skin severity and progression40,41.

In summary, we now have a much better insight than 
5 years ago into the factors that predict disease progres-
sion, and progress is being made towards a stratified 
approach to therapy. As we continue to advance our 
knowledge, it will be possible to build upon the concep-
tual framework for the association between skin-score 
trajectory and the biology of progression and regression, 
as outlined in Fig. 2.

Outcome measures
Reliable outcome measures that are sensitive to change are 
a prerequisite to monitoring both disease progression and 
the response to treatment. However, identification and/or  
development of reliable outcome measures for SSc  
skin disease has proved to be a major challenge, lead-
ing to much discussion between clinicians and indus-
try partners, and demonstrating the need for further 
research. Here, we describe the main outcome meas-
ures used for the assessment of skin involvement42. The 
current outcome measures are not ideal, but efforts are 
ongoing to improve them through modification of exist-
ing tools and development of new measures, including 
(at least for early-phase studies) non-invasive imaging 
techniques.

The mRSS
Measurement of the extent of skin involvement is 
complex, and needs to take into account the surface 
area affected and the degree of involvement at various 
body sites. The mRSS43, which involves skin palpation 
at 17 sites, has been fully validated as per OMERACT 
principles44, but presents challenges. The mRSS is 
described in detail elsewhere43, and key points relating 
to its use and limitations are presented in Box 1.

Self-assessment of skin involvement
The ‘hands on’ nature of the mRSS has implications 
for both clinical practice and clinical trials in the era 
of COVID-19, when patient visits to hospital are being 
minimized. Therefore, patient self-assessment of skin 

NaTuRe RevIeWS | RheuMAtoLogy

R e v i e w s

  voluMe 18 | May 2022 | 279



0123456789();: 

involvement, which was previously proposed45,46, but 
not widely applied, is now an attractive option. An excit-
ing development is the Patient Self-Assessment of Skin 
Thickness in Upper Limb (PASTUL) questionnaire47. 
In an initial study of 104 patients with SSc, 78 (75%) of 
whom also had an mRSS assessment, there was mod-
erate correlation between PASTUL scores and both 
total mRSS (r = 0.56) and upper-limb mRSS (r = 0.58). 
PASTUL scores also strongly correlated with results 
from the Scleroderma Skin Patient-Reported Outcome 
(SSPRO)48. Once fully validated, PASTUL could be 
an important addition to clinical trials, bringing the 
possibility of more-frequent skin scoring during trial 
treatment than has previously been possible (and in the 
patient’s own home).

Other outcome measures
The limitations of the mRSS have resulted in exploration 
of the use of other outcome measures of skin involve-
ment, including composite measures. These measures 
are attracting increasing interest for application in trials 
of early dcSSc.

Patient-reported outcomes. The SSPRO48 is an 18-item 
questionnaire for the assessment of skin-related qual-
ity of life in patients with SSc. Researchers have already 
applied the SSPRO in clinical trials49, and its further use 
is likely. The HAQ-DI, although not specific to the skin 
involvement of early dcSSc, captures much of the asso-
ciated disability and has the advantage that most clini-
cians are familiar with it. In the past 5 years, several trials 
have included the HAQ-DI as an outcome measure35,49–55. 
Because itch can be a very prominent feature in early 
dcSSc, itch assessment should also be considered, for 
example, with the 5-D itch scale56, which researchers 
included in a 2020 phase 2 study of the safety and effi-
cacy of the cannabinoid receptor 2 agonist lenabasum 
for the treatment of patients with SSc49.

Non-invasive imaging methods. The two main methods 
in this category are high-frequency ultrasonography and 
optical-coherence tomography (OCT). Ultrasonography 
reliably measures skin thickness, according to results 
from several cross-sectional studies57–60, and a 2021 study 
advocated ultrasonography as an outcome measure61. 

Early phase disease with 
more-severe skin symptoms.
High risk of  internal-organ 
complications including: 

• Progressive lung fibrosis
• Scleroderma renal crisis

Later stage disease with stable 
or improved skin score but 
greater clinical burden of: 

• Severe gut symptoms
• Calcinosis
• Telangiectasis
• Late progressive lung fibrosis
• Pulmonary hypertension

Trigger event

Genetic and 
environmental 
susceptibility

High-baseline 
non-improver

Overlapping TGFβ-regulated tissue-repair 
processes determine progression and regression 
of skin fibrosis (analogous to wound healing)

Balance between 
profibrotic activation and 
antifibrotic regression 
determines skin-score 
trajectory and disease 
phenotype, including risk 
of organ-based disease

• High activation
• Low regression
• Persistent drivers

High mortality

Biological process Clinical association

High-baseline 
improver

• High activation
• High regression

Frequent association
with anti-RNA poly-
merase III autoantibody

Low-baseline 
improver

• Medium activation
• Medium regression

Low risk of organ-based 
complications

m
R

SS

4321

Time (years)

dcSSc ‘skin-score trajectory’

Profibrotic activation

Antifibrotic regression

Fig. 2 | Conceptual framework for skin-score trajectory and clinical 
diversity in diffuse cutaneous systemic sclerosis. Although at a group 
level, cohort studies and clinical trials of systemic sclerosis (SSc) almost 
always show improvement in average skin score over 1–3 years, this 
group-level behaviour does not reflect differences in modified Rodnan skin 
score (mRSS) change over time for individual patients. Operationally, SSc 
can be differentiated into three subgroups, characterized by high peak 
mRSS followed by regression, high peak mRSS without disease regression 
or lower peak mRSS tending to improve over 2–5 years of follow-up. This 
pattern of subgroups is likely to reflect interplay between the effectors of 
progression and fibrosis and the counteracting influence of the mechanisms 
that determine spontaneous regression, which is a hallmark of normal skin 

wound healing. Molecular and cellular determinants of these processes are 
likely to interact and to underlie the distinct patterns of skin disease, and 
might also determine the development and severity of internal-organ 
complications in SSc. Greater understanding of the biological basis of 
heterogeneity in skin-score change could facilitate clinical trial design and 
a more stratified approach to patient care. Notably, in normal skin, 
wound-healing mediators such as TGFβ regulate both profibrotic 
mechanisms and processes involved in regression of fibrosis, such as 
induction of matrix-degrading metalloproteinases. The balance between 
these processes of activation and regression and the persistence of local 
mediators of fibrosis might underlie the distinct skin-score trajectories 
observed for individual patients with SSc16,23,38.
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Ultrasonographic measurement of skin thickness with a 
4–15 MHz linear probe correlated well with histological 
assessment (r = 0.6926, P = 0.009) and with local (fore-
arm) mRSS (r = 0.7961, P = 0.001) in 13 patients with 
SSc (nine of whom had dcSSc) who underwent forearm 
skin biopsy62. As the imaging resolution with ultrasono-
graphic devices improves and ultrasonography-based 
elastography becomes available in a clinical setting,  
additional studies will be needed to assess the relia-
bility and validity of improved ultrasonographic skin- 
thickness measurement modalities in SSc63. Moreover, 
accurate measurement by ultrasonography requires 
training and is time-consuming if performed at mul-
tiple body sites in individual patients, which probably 
explains why ultrasonography has not been adopted as 
an outcome measure in later-phase multicentre studies.

The technical challenges associated with ultrasono-
graphy will most likely also apply to OCT, which is 
another promising tool for the assessment of skin thick-
ness that is currently in early-phase proof-of-concept 
studies. OCT essentially takes in vivo ‘optical biopsy’ 
images of the skin64 to visualize skin structure. In this 
way, epidermal thickness can be measured at high reso-
lution (<10 µm). Very few studies have so far examined 

the use of OCT in patients with SSc65,66. Although 
OCT can provide higher imaging resolution than 
ultrasonography-based techniques, currently it has 
limited imaging depth, which complicates assessment 
of lower layers of dermis in certain body areas, under-
scoring the need for further development in this area. 
Polarization-sensitive OCT (PS-OCT)67 is an extension 
to OCT that involves the measurement of birefringence 
(an optical property of collagen) in addition to skin thick-
ness. Birefringence can be considered a measure of skin 
‘heterogeneity’ and, therefore, potentially a measure of 
fibrosis. Epidermal thickness measured by PS-OCT cor-
related with histological thickness in a study that involved 
ten patients with SSc and ten healthy individuals68. Larger 
prospective studies that examine change over time  
are required to validate both ultrasonography and OCT 
as possible outcome measures.

Durometry. As a measure of skin hardness, durometry 
has long been advocated as a possible outcome measure 
in clinical trials of early dcSSc69, but not widely adopted. 
However, in 2020 durometry was revisited70, and it 
deserves further investigation, including in longitudi-
nal studies with examination of sensitivity to change.  
A durometer is hand-held, portable and relatively easy 
to use, making durometry a potentially useful additional 
outcome measure in multicentre studies.

Composite scores. Composite scores incorporate mul-
tiple elements and might therefore be more represent-
ative of disease status than individual measures. At 
present there are no composite scoring systems specifi-
cally for skin disease in patients with SSc. However, the 
ACR provisional composite response index in dcSSc 
(CRISS)71,72, which is heavily weighted by the mRSS, was 
used in patients with dcSSc in several studies that had 
results published in 2020 (reFS35,49,51–53). The ACR-CRISS 
includes five measures: the mRSS, percentage predicted 
forced vital capacity, the HAQ-DI, and patient and  
clinician global assessments.

Dynamic biomarkers. Longitudinal measurements of 
expression in skin of two genes, THBS1 and MS4A4A, 
correlate with mRSS measurements73. However, no stud-
ies have yet produced evidence of changes in skin gene 
expression that correlate with how patients with dcSSc 
‘feel, function and survive’, to establish them as surrogate 
outcome measures.

Serum is another possible source of composite bio-
markers, such as those used for the enhanced liver fibro-
sis score38,41, as well as novel proteomic markers that are 
currently being explored as candidates for the assessment 
of treatment response74. However, evidence suggests that 
substantial heterogeneity could exist in the longitudinal 
relationships between serum markers and mRSS38.

Best-practice management
Although there is currently no cure for SSc (so it is 
important that whenever possible patients are recruited 
into clinical trials), there is no room for nihilism, as 
much can be done to support patients through the wor-
rying phase of early dcSSc. Management options include 

Box 1 | Modified Rodnan skin score

What is the modified Rodnan skin score?
To determine the modified Rodnan skin score (mRSS), skin is assessed by palpation at  
17 sites and scored on a 0–3 scale (0 = uninvolved, 1 = mild involvement, 2 = moderate 
involvement, 3 = so severely affected that the skin can hardly be moved), giving a  
total score of 0–51. The minimal clinically important difference for improvement at  
12 months, in the context of a clinical trial, is 5 units106.

Limitations
•	Substantial inter-observer variability occurs with the mRSS107, although in a study 

in which ten rheumatologists assessed seven patients, inter-observer and intra- 
observer reliability were high (0.81 and 0.94, respectively)108. a major contributor to 
inter-observer variability is that some raters tend to ‘maximize’ (select a score based 
on the most severely affected area), some choose a ‘representative’ score (select the 
score that seems more representative) and some choose an ‘average’ score43,109. 
Standardized training can reduce variability in skin scoring110,111.

•	With the mRSS, the skin is very difficult to assess in later-stage disease112, because
although the skin is then softening it can remain tethered, making it impossible 
to pinch.

Applicability
In clinical practice

•	Without doubt, the mRSS is useful in the outpatient clinic, because it is quick and easy
to perform and will help the clinician to decide whether to intensify or to begin with-
drawing immunosuppressant treatment. The mRSS associates with patient-reported 
worsening of skin involvement113.

In clinical trials

•	The mRSS has tended to be the primary outcome in clinical trials of potential disease- 
modifying therapies in patients with early dcSSc, given that the degree of skin involve-
ment reflects the ‘overall’ early dcSSc disease process. Several of these trials35,49–53 
have failed to meet their primary end points, although signs of efficacy have come 
from secondary end points. For example, in the FocuSSed phase 3 randomized
placebo-controlled trial of tocilizumab51, patients on active treatment showed no 
improvement in mRSS, but lung function did improve. In a randomized controlled trial 
of abatacept35, active treatment resulted in improvement of scores for the Health 
assessment Questionnaire-Disability Index (HaQ-DI)114 and aCR Composite Response 
Index in dcSSc (a composite measure including the mRSS)71, but not for mRSS alone. 
experience in these and other studies raises the question of whether improvement 
in skin disease was ‘missed’ because of the limitations of the mRSS.

Elastography
Assessment of the elasticity 
and stiffness of soft tissues, 
usually by ultrasonography.
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symptomatic treatment for progressive skin disease 
and (in most patients) immunosuppression. Notably, 
the evidence base in favour of immunosuppression is 
weak11. In addition, a small minority of patients are 
candidates for HSCT6. Despite recent interest in the 
tyrosine kinase inhibitor nintedanib as a treatment for 
SSc-related interstitial lung disease, the SENSCIS trial 
provided no evidence of an improvement in skin score75, 
although it was primarily a trial investigating lung  
disease rather than a study of patients with early dcSSc.

Here, we describe aspects of best-practice manage-
ment of skin thickening in early dcSSc, as shown in Fig. 3. 
Decisions on treatment (particularly on the choice of 
immunosuppressant) are influenced by the presence or 
absence of other SSc ‘complications’, such as concomitant  
myositis or interstitial lung disease76.

Early recognition
Diagnosis of early dcSSc is often delayed77, which pre-
vents timely identification and early treatment of (for 
example) internal-organ involvement and delays patient 
education. These delays can be addressed by raising 
physicians’ awareness of the signs and symptoms of 
dcSSc. Any patient with new onset of skin thickening 
that could indicate early dcSSc should be referred to a 
specialist centre, especially if the skin thickening has 
rapidly progressed. Although raynaud phenomenon is 
a symptom in most patients with early dcSSc, in some 
individuals it develops only after skin thickening, so the 
use of Raynaud phenomenon as a ‘red flag’78 does not 
always apply to dcSSc, in contrast to the situation in 
limited cutaneous SSc, in which the onset of Raynaud 

phenomenon usually precedes the diagnosis of SSc by 
many years6.

General measures
The four main general measures for the management of 
skin involvement in early dcSSc are analgesia, treatment 
of itch, physiotherapy and occupational therapy. Clinical 
psychology input is an additional consideration.

Analgesia. The pain of skin disease in early dcSSc is 
often insufficiently recognized, even though it has 
a considerable effect on quality of life. Among the  
326 patients recruited into ESOS12, the mean and median 
scores for the sHAQ pain scale (which has a range of 
0–100, with 100 indicating the greatest disability) were 
32.9 (standard deviation 26.9) and 29.0 (interquartile 
range 8.7–52.7), and skin thickening correlated with 
pain (ρ = 0.17, P = 0.002). Development of contractures 
and ulcers further contributes to pain. Analgesia is 
therefore a key aspect of management. The pain might 
have a neurogenic component79, so treatment with gab-
apentin or pregabalin can be considered. Some patients 
will benefit from referral to a pain-management clinic.

Management of itch. Management of this symptom is 
very challenging. Antihistamines can be tried, but sel-
dom seem to be helpful. Some patients find benefits 
with 1% menthol in aqueous cream. Anecdotally (A.H., 
unpublished observations), low-dose prednisolone can 
relieve itch. Prednisolone is, however, a risk factor for 
scleroderma renal crisis, as discussed below.

Physiotherapy and occupational therapy. Researchers 
have given little attention to the roles of physiotherapy 
and occupational therapy in early dcSSc, even though it 
seems logical that these approaches could be helpful to 
maintain range of movement and maximize function. 
Anecdotally, patients benefit from stretching exercises 
to maintain range of movement, and many enjoy hydro-
therapy (A.H., unpublished observations). In a 2021 
study that included 34 patients with dcSSc, but with 
unspecified disease duration, results suggested a bene-
fit from hand exercises80. Ideally, all patients with early 
dcSSc should be assessed by an occupational therapist, 
as almost all patients have considerable functional disa-
bility, including impairment of hand function12. ‘Remote’ 
occupational therapy via a mobile app81 could be a way 
forward, at least in some patients.

Clinical psychology input. Patients with early dcSSc 
report feeling overwhelmed by their disease, with loss 
of control. This feeling relates in large part to the disabil-
ity, pain and fatigue that are directly or indirectly related 
to skin disease. Clinical psychology referral should be 
considered.

Immunosuppressant therapy
Both the British Society for Rheumatology (BSR)–
British Health Professionals in Rheumatology (BHPR)82 
and EULAR83 recommend immunosuppressant therapy 
for the skin disease of SSc. The BSR–BHPR guidelines 
suggest the use of mycophenolate mofetil (MMF), 

General measures

• Analgesia
• Treatment of itch 
• Physiotherapy
• Occupational therapy 

Immunosuppressant therapy

• Mycophenolate mofetil
• Methotrexate 
• Cyclophosphamide

Consider

• Autologous haematopoietic 
stem-cell transplantation

Progressive skin thickening 

Referral to 
specialist centre 

Inclusion into 
a clinical trial 

Glucocorticoids

Early recognition 

± ±

Fig. 3 | Management of skin disease in patients with early diffuse cutaneous sys-
temic sclerosis. Early recognition and referral to a specialist centre are the first princi-
ples of management. Pending specialist review, ‘general measures’ should be initiated.  
In most patients, immunosuppressant therapy should be prescribed. If at all possible, 
patients should be offered the opportunity to participate in a clinical trial. For patients 
who continue to progress, haematopoietic stem-cell transplantation should be 
considered.

Raynaud phenomenon
Colour change of the fingers  
on exposure to cold or to 
emotional stress: the classic 
triphasic change is white  
to blue to red.
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methotrexate or cyclophosphamide, whereas the EULAR 
recommendation is for methotrexate. Among the few 
clinical trials of immunosuppressants that have specifi-
cally examined skin disease primarily in early dcSSc, two 
used methotrexate84,85, none used MMF (despite results 
from several early retrospective and prospective obser-
vational studies that suggest benefit86–88) and none used 
cyclophosphamide. In ESOS11, the researchers examined 
the relative effectiveness of commonly used immuno-
suppressants in patients with early dcSSc. The treatment 
options in this observational study were methotrexate 
(oral or subcutaneous at a target dose of 20–25 mg 
weekly), MMF (target dose 1 g twice daily), cyclophos-
phamide (intravenous or oral) or no immunosuppres-
sant. A trend in favour of immunosuppression was seen, 
as after 12 months, mRSS fell in all groups, but more 
so in the immunosuppressant groups: for methotrexate 
(n = 65) −4.0 units (95% CI −5.2 units to −2.7 units),  
for MMF (n = 118) −4.1 units (95% CI −5.3 units to  
−2.9 units), for cyclophosphamide (n = 87) −3.3 units 
(95% CI −4.9 units to −1.7 units) and for no immuno-
suppressant (n = 56) −2.2 units (95% CI −4.0 units  
to −0.3 units) (P-value for between-group differ-
ences = 0.346). The conclusion from ESOS was that 
immunosuppression conferred benefit, but that this 
benefit was modest. Improvements in mRSS in patients 
with dcSSc (although not specifically early dcSSc) also 
occurred in the Scleroderma Lung Study I (cyclophos-
phamide compared with placebo) and the Scleroderma 
Lung Study II (cyclophosphamide and MMF compared 
with patients treated with placebo in Scleroderma Lung 
Study I) at 12, 18 and 24 months (P < 0.05)89. Further 
support for the use of MMF comes from the results of 
an Australian observational study90 and from a report  
of five patients with recurrence of progressive skin 
involvement after either discontinuation or dose  
reduction of MMF91.

Glucocorticoids
The use of glucocorticoids in early dcSSc is highly 
controversial92, and although some clinicians prescribe 
them, others do not, as demonstrated by the observa-
tion that 44% of patients who were recruited into ESOS 
had been prescribed them11. Glucocorticoids are likely 
to reduce the itch and pain (from the skin) that occur 
in patients with early dcSSc because these symptoms 
are thought to result from skin inflammation. However, 
glucocorticoids are a risk factor for renal crisis, espe-
cially when used in high doses93–95. Many clinicians 
are, therefore, understandably reluctant to prescribe 
glucocorticoids for patients with early progressive 
dcSSc, who are already at high risk of renal crisis,  
a risk that is further increased with anti-RNA polymer-
ase III antibody positivity96,97. Notably, patients who are 
anti-RNA polymerase III antibody positive often have 
rapidly progressive disease23 and are therefore particu-
larly likely to have itchy, painful skin that might ben-
efit from glucocorticoid treatment. This controversial 
issue is currently being investigated in a randomized 
placebo-controlled trial of the use of prednisolone in 
patients with early dcSSc (ClinicalTrials.gov identifier: 
NCT03708718)55.

Intravenous iloprost
Intravenous iloprost is widely used in the treatment of 
SSc-related digital vasculopathy, but might have other ben-
eficial effects, such as the downregulation of expression of 
connective-tissue growth factor98. In our experience (C.D. 
and A.H., unpublished observations), intravenous iloprost 
can help to heal the superficial ulcers that can occur in 
patients with very tightened skin (Fig. 1b), suggesting  
that there is an ischaemic element to these ulcers.

Autologous HSCT
HSCT should be considered in highly selected patients 
with rapidly progressive dcSSc. In all three trials that 
provided the evidence base for this recommendation 
(ASSIST99, ASTIS100 and SCOT101), patients who under-
went HSCT demonstrated benefit in terms of mRSS 
compared with patients treated with cyclophosphamide, 
although mRSS was not the primary end point (mRSS 
was, however, part of the composite primary end point 
in the ASSIST study99). Improvement in mRSS was also 
reported in a prospective ‘real-world’ study of 80 patients 
who underwent HSCT102. The treatment-related mor-
tality of HSCT in the SCOT study was 3% at 54 months 
and 6% at 72 months101, and therefore lower than pre-
viously reported (a 2001 phase 1/2 trial reported a 
procedure-related mortality of 17%)103, most likely 
reflecting careful patient selection and adjustments to 
the transplantation regime. A key question that is cur-
rently being addressed104 is whether HSCT should be 
recommended as a first-line therapy as opposed to being 
reserved for patients who do not respond to immuno-
suppressant therapies. This difficult decision will be 
informed by the stratified medicine approach referred to  
earlier (taking into account advances in our ability  
to predict those patients most likely to have progressive 
disease), and by ensuring that individualized care is  
tailored to patients’ needs and expectations105.

Conclusions
The past 5 years have provided new insights into the most 
visible and characteristic manifestation of early dcSSc — 
skin thickening (scleroderma) — which is often rapidly 
progressive. Importantly, we now recognize the burden of 
skin disease, which has a very considerable effect on qual-
ity of life; previously, it was often overlooked. We are now 
in a good position to predict which patients will develop 
rapid progression of skin thickening, thereby enabling 
early intervention with immunosuppressive therapies or 
with HSCT, and/or inclusion into clinical trials. The lack 
of reliable outcome measures of skin disease represents a 
major unmet need. However, the challenges of monitoring 
skin disease, both in the clinic and in the setting of clinical 
trials, are now better understood, and research is ongo-
ing. Better outcome measures (and improved identifica-
tion of progressors) will maximize the efficiency of future 
clinical trials of the many promising new targeted thera-
pies. Pending identification of a safe and effective treat-
ment, clinicians should not forget current best-practice  
guidelines, which can provide at the very least some 
symptomatic relief from painful, disabling skin disease.
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The incidence of cardiovascular disease (CVD) is higher 
in patients with systemic lupus erythematosus (SLE) 
than in an age-matched and sex-matched healthy popu-
lation1,2. Approximately 7% of patients with SLE will 
experience a cardiovascular event, and those who are 
between 35 and 44 years of age are ~50 times more likely 
to have a myocardial infarction than the general popula-
tion of the same age group3. Although treatment-related 
and disease-related complications, including renal 
disease and infection, are common causes of death in 
patients with SLE, CVD remains the leading cause of 
death4. A meta-analysis of observational studies showed 
that patients with SLE had a standardized mortality ratio 
of 2.72 for cardiovascular-related death compared with 
the general population5. Although traditional CVD risk 
factors (as described in the Framingham study) are more 
prevalent in patients with SLE than in their age-matched 
and sex-matched healthy counterparts6,7, they are una-
ble to completely account for the excessive cardiovascu-
lar mortality observed in patients with SLE8. Over the 
past four decades, observational and mechanistic stud-
ies have been conducted in an attempt to understand 

how non-traditional and disease-specific risk factors, 
such as genetic susceptibility9–14, pro-inflammatory 
mediators15, SLE disease activity16, lupus nephritis17 and 
the presence of anti-phospholipid antibodies18, adversely 
affect the cardiovascular system in the context of SLE 
by enhancing and worsening atherosclerosis. The rele-
vance of inflammatory processes in atherosclerosis that 
are triggered by and related to the SLE disease process 
has drawn substantial attention in the past three decades, 
as inflammation was noted to be involved in driving the 
initiation, formation and eventual rupture of athero-
sclerotic plaques19,20, indicating that dampening inflam-
mation is one of the relevant strategies for reducing the 
burden of CVD in patients with SLE21.

In the past two decades, endothelial dysfunction, 
which has increasingly been recognized to occur in the 
very initial step of the process of atherosclerosis22,23, has 
been extensively studied in murine SLE models and 
human SLE. Whereas in vivo measurement of endothelial 
function can be readily conducted in animals24, it used to 
be impractical for studying humans, and even impossi-
ble in clinical settings. Nowadays, equipment validated 
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Abstract | The observations that traditional cardiovascular disease (CVD) risk factors fail  
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investigations of non-traditional, SLE-related risk factors that contribute to cardiovascular 
complications in patients with SLE. Of the various perturbations of vascular physiology, 
endothelial dysfunction, which is believed to occur in the earliest step of atherosclerosis, has 
been extensively investigated for its contribution to CVD risk in SLE. Endothelial progenitor 
cells (EPCs), which play a crucial part in vascular repair, neovascularization and maintenance of 
endothelial function, are quantitatively and functionally reduced in patients with SLE. Yet, the 
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for non-invasive measurement of biophysical endothe-
lial function is increasingly available and decreasingly 
operator dependent. One of the classical non-invasive 
assessment tools of biophysical endothelial function in 
patients with SLE that has been most frequently reported 
is the measurement of endothelium-dependent (ED) 
flow-mediated vasodilatation (FMD) of the brachial 
artery (baED-FMD). To date, most of the observa-
tional studies revealed that baED-FMD was impaired 
in patients with SLE, even when they did not pres-
ent with clinical CVD25–28, supporting the hypothesis  
that subclinical CVD in the form of endothelial dysfunc-
tion is already active in patients with SLE prior to the 
occurrence of cardiovascular events.

Seeking a deeper understanding of the upstream 
mechanisms leading to endothelial dysfunction, var-
ious investigators have intensively studied the cellular 
mechanisms that lead to endothelial function impair-
ment in patients with SLE. In particular, the study of 
endothelial progenitor cells (EPCs) has attracted much 
interest in the past 15 years. EPCs are postulated to be 
capable of replacing damaged endothelial cells, restoring 
endothelial integrity and hence endothelial function29,30. 
Observational studies and a meta-analysis revealed 
that the quantity of circulating EPCs was significantly 
reduced in patients with SLE compared with healthy 
people, even in patients who have not experienced a 
cardiovascular event31–37. Nevertheless, the paucity of 
prospective data on the effect of endothelial dysfunc-
tion on CVD risk in SLE, coupled with the lack of a clear  
definition and validated method of identification of 
EPCs, has generated substantial controversy regarding 
the pathological, diagnostic and prognostic roles of these 
early CVD biomarkers, as well as the therapeutic poten-
tial of EPCs in patients with SLE. This Review provides 
an overview of the epidemiology of CVD in SLE, with a 
special focus on the current state of research in endothe-
lial function and circulating EPCs, and their relation-
ships with the immune, metabolic and musculoskeletal 
systems. Potential utilization of endothelial function 
assessment and EPCs as diagnostic and prognostic 
biomarkers of SLE and the foreseeable challenges of 
bringing these biomarkers to routine clinical use will be 
critically discussed (Fig. 1). This Review is not intended 
to elaborate substantially on the molecular perturbations 

leading to endothelial dysfunction and perturbation of 
EPC quantity and function, as these topics have been 
thoroughly described in our and other investigators’ 
previous work38–40.

CVD risk and SLE
Although traditional CVD risk factors are prevalent in 
patients with SLE, non-traditional, disease-specific CVD 
risk factors have been increasingly recognized in patients 
with SLE. In the past two to three decades, many factors 
that are directly or indirectly related to SLE have been 
demonstrated to be detrimental to the cardiovascular 
health of patients with SLE (Box 1). Of these factors, 
alterations of lipoprotein fractions and renal involve-
ment of SLE deserve further elaboration, as they are 
relevant to routine clinical management of SLE.

HDL cholesterol. HDL cholesterol (HDL-c) classically 
manifests its anti-atherogenic effects through increas-
ing cholesterol efflux capacity and scavenging oxidizing 
substances; however, the properties of HDL-c in patients 
with SLE are altered in two major ways, rendering it 
pro-atherogenic. First, cholesterol efflux capacity was 
found to be significantly reduced in patients with SLE 
compared with healthy individuals41 and patients with 
rheumatoid arthritis (RA), despite individuals with RA 
having worse lipid profiles42. Further, reduced choles-
terol efflux capacity was associated with the presence of 
carotid atherosclerotic plaques (as detected with ultra-
sonography) in patients with SLE42. Second, a proportion 
of HDL-c in patients with SLE shifted from an anti- 
inflammatory to a pro-inflammatory property, promot-
ing the production of pro-inflammatory IL-6 and tumour 
necrosis factor (TNF) and suppressing the blockage of 
Toll-like receptor (TLR)-induced inflammation in macro-
phages, a pivotal leukocyte population that can develop 
into foam cells and trigger atherosclerosis43. Although 
longitudinal data have demonstrated the asso ciation 
between pro-inflammatory HDL-c and the development 
of subclinical atherosclerosis over time44,45, whether 
pro-inflammatory HDL-c predicts cardiovascular events 
in patients with SLE remains to be studied.

Lupus glomerulonephritis. Lupus glomerulonephritis is 
common in patients with SLE and is one of the factors 
that reduce their survival46,47. Patients with SLE with a 
history of renal involvement have higher cardiovascular 
morbidity and mortality than those without it48,49. Renal 
impairment is a traditional CVD risk factor owing to 
its association with hypertension and accelerated 
atherosclerosis50,51, and lupus glomerulonephritis per se 
is sufficient to elevate CVD risk. In a retrospective study 
of >3,700 patients with SLE, the odds of the presence of  
CVD in patients with SLE with lupus glomerulonephri-
tis were significantly higher than in those without lupus 
glomerulonephritis52, both the proliferative and the 
membranous types.

Pathological alterations of glomerular endothelial 
cells in lupus nephritis are evident53,54. The SLE-related 
inflammatory milieu that contributes to the production 
of TNF, IL-1β, IL-13 and IFNγ leads to the activation of  
nuclear factor-κB (NF-κB) and signal transducer and 

Key points

•	Traditional cardiovascular disease (CvD) risk factors are prevalent in patients with 
systemic lupus erythematosus (Sle), but this observation cannot fully explain the 
excess of cardiovascular mortality and morbidity in these patients.

•	endothelium-dependent flow-mediated dilation of the brachial artery, a common 
biophysical measure of endothelial function, is impaired in patients with Sle, even  
if they do not present with CvD.

•	Impaired endothelial function is associated with increased diastolic blood pressure, 
inflammation and vertebral bone loss in patients with Sle.

•	endothelial progenitor cells (ePCs) are reduced quantitatively and functionally  
in patients with Sle, compared with healthy individuals.

•	antimalarial drug use might be associated with elevation of levels of circulating 
angiogenic cells in patients with Sle.

•	Standardization of the definition and functional characterization of ePCs is paramount 
before ePCs can be used as prognostic biomarkers for CvD in patients with Sle.
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activator of transcription 1 (STAT1) in resident glomer-
ular endothelial cells, which perpetuate renal inflamma-
tion53. Although the evidence is limited, the mechanistic 
relationships between endothelial cells, T cells and lupus 
nephritis have been demonstrated in animal models 
and human lupus nephritis. Increased levels of inter-
cellular adhesion molecule 1 (ICAM1) and vascular cell 
adhesion molecule 1 (VCAM1) in patients with active 
lupus glomerulonephritis were found to be significantly 
associated with reduced circulating levels of CD4+ and 
CD8+ regulatory T cells (Treg), suggesting that low levels 
of Treg in patients with SLE might be related to endo-
thelial cell activation55. Adoptive transfer of periph erally 
induced CD8+–CD103+ Treg in MRL/lpr lupus-prone 
mice not only reduced the circulating levels and tissue 
expression of various pro-inflammatory cytokines and 
circulating autoantibodies, but also alleviated protein-
uria, the expressions of ICAM1 and VCAM1 on glomer-
ular endothelial cells and the pathological lesions of 
glomerulonephritis55. The inhibitory action of CD8+–
CD103+ Treg on glomerular endothelial cells increased 
angiogenesis-related processes, including glomerular 
endothelial cell proliferation, migration and tube for-
mation, leading to mitigation of lupus nephritis in the 
animal model55.

In summary, the increased prevalence of traditional 
CVD risk factors, the presence of risk factors associated 
with SLE and its treatment and renal lupus increase the 
occurrence of cardiovascular morbidity and mortality 
in patients with SLE. With meticulous monitoring and 
control of CVD and SLE-related risk factors (such as 
maintenance of low disease activity state, attainment of 
renal remission, aggressive control of blood pressure and 
proteinuria in patients with lupus nephritis, and mini-
mization of the use of glucocorticoids in all patients56) 
reduction of CVD burden in patients with SLE is not 
an unrealistic goal. In fact, a prospective observational 
study involving 33 cohorts of patients with SLE globally 
between 1999 and 2017 demonstrated that the preva-
lence and the rate of accrual of atherosclerotic vascular 
events have been declining over time57. Improved control 

of traditional CVD risk factors and SLE disease activ-
ity, particularly with the use of antimalarial drugs, are 
probably the reasons for the improving cardiovascular 
outcome in patients with SLE58.

Early atherosclerosis markers. Secondary prevention 
is inevitable once clinical atherosclerosis, which mani-
fests as cardiovascular and/or cerebrovascular events, 
has developed. In the past two decades, investigators 
began to search for reliable surrogate markers of pre-
clinical atherosclerosis aiming to diagnose, evaluate 
and prognosticate CVD in patients with SLE. In 2003, 
it was first reported that coronary artery calcification 
detected by electron-beam CT was significantly more 
prevalent in patients with SLE than in age-matched 
and sex-matched healthy individuals59. Subsequent 
cross-sectional studies confirmed these findings60–62. 
Although progres sion of coronary calcification was 
detected in short-term prospective studies63,64, longer 
term longitudinal data (>8 years) that address whether 
this surrogate imaging marker of coronary artery  
disease can predict cardiovascular events are lacking.

In the past 15 years, much interest has shifted to the 
exploration of the earliest steps involved in the ather-
ogenic process in patients with SLE, resulting in new 
understanding of how endothelial function is impaired 
and why the quantity and function of EPCs in patients 
with SLE are compromised. Nevertheless, controversy 
on how EPCs should be identified and functionally  
characterized has not been resolved.

Endothelial function in SLE
Endothelial integrity is essential for preserving endo-
thelial function and thereby vascular health and is 
maintained by the homeostasis of endothelial damage 
and repair65. When endothelial damage overwhelms 
the repair process, endothelial dysfunction, which is 
believed to be the initial step of the process of atheroscle-
rosis, ensues22,23. Numerous studies have demonstrated 
endothelial dysfunction in patients with hypertension, 
diabetes mellitus, metabolic syndrome and history of 
cardiovascular events66–69. Furthermore, many obser-
vational studies found that endothelial dysfunction was 
predictive of the occurrence of cardiovascular events70–73. 
Several observational studies have demonstrated that 
endothelial dysfunction is more prevalent in patients 
with SLE than in demographically matched healthy 
individuals31–35,37.

Despite the pathological and therapeutic impli-
cations of the presence of endothelial dysfunction in 
patients with SLE early during their disease course, 
few studies thus far were specifically designed to study 
endothelial dysfunction in this subset of patients. In a 
case–control study that involved 149 patients who had 
paediatric-onset SLE, with a median age of 17.2 years 
and disease duration of 3.2 years (interquartile range 
1.8–4.9 years), baED-FMD was significantly inferior 
in the patients with SLE compared with healthy indivi-
duals. In addition, longer disease duration was inde-
pendently associated with reduced FMD74. In another 
study that assessed 20 adult patients who had new- 
onset SLE with a mean disease duration of 14 months 

SLE

Standardization of EPC 
enumeration and 
functional assessment

Standardization of 
endothelial function 
measurement

↓ EPC ↓ Endothelial
    function

CVD
↑ EPC number ↑ Endothelial 

    function

Prognostication

Fig. 1 | Relationships between endothelial function, EPCs and CVD in SLE. Reduced 
quantity and function of endothelial progenitor cells (EPCs) and impaired endothelial 
function, which are observed in patients with systemic lupus erythematosus (SLE), 
increase the risk of cardiovascular disease (CVD). Standardization of EPC quality and 
functional assessment and of endothelial function evaluation aid prognostication of 
CVD in patients with SLE.
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(range 1–58 months), endothelial function was sig-
nificantly inferior in the SLE group compared with 
20 healthy individuals matched for age, sex, BMI and 
blood pressure75. However, patients with endothelial 
dysfunction did not demonstrate myocardial dysfunc-
tion on transthoracic echocardiography75. Although the 
cross-sectional nature of these studies could not address 
the temporal relationship between the occurrence of 
endothelial dysfunction and that of subclinical as well 
as clinical impairment of cardiac function, whether the 
impairment of endothelial function can serve to predict 
CVD events in patients with SLE is worth exploring by 
prospective studies.

Endothelial function assessment. There are several 
established methods for assessing endothelial func-
tion in a non-invasive way; of these, the biophysical 
measurement methods, including baED-FMD and the 
endothelium-independent (EID) FMD of the brachial 
artery (baEID-FMD), are most commonly reported in 
patients with SLE. Briefly, baED-FMD involves tem-
porary occlusion of the brachial artery, which results 
in ischaemia-induced vasodilation secondary to the 
release of endothelium-derived nitric oxide (eNO)76; 
eNO produced in the endothelium diffuses into the vas-
cular smooth muscle cells and induces cGMP-mediated 
vasodilation77. By contrast, baEID-FMD requires sub-
lingual administration of nitroglycerin as a source of 
nitric oxide, followed by FMD detection that is proce-
durally similar to that of baED-FMD measurement78,79 
(TaBle 1). In general, individuals are required to rest in 
supine position for at least 10 min before measurement, 
which takes place with the patient in the same position. 
The room where these tests are conducted should be 
quiet, dimly lit, with excellent control of temperature 
to minimize vascular tone fluctuations. Individuals 
are asked to abstain from food and exercise for 12 h, 

caffeine-containing food and beverages for 24 h and 
alcohol for 48 h prior to the procedure. In addition, 
individuals assuming a vasoactive drug, such as calcium 
channel blockers, beta-adrenergic receptor blockers and 
angiotensin converting enzyme inhibitors, are conven-
tionally advised to suspend them for 36 h ahead of the 
test. Female individuals should be assessed at least 7 days 
after cessation of their last menstrual period to mitigate 
the effect of progesterone on endothelial reactivity.

In a meta-analysis of 13 studies that compared 
baED-FMD and baEID-FMD between 580 patients with 
SLE and 381 healthy individuals, baED-FMD was signif-
icantly reduced in patients with SLE compared with their 
age-matched and sex-matched healthy counterparts80. 
Increasing age and longer duration of SLE correlated 
significantly with lower baED-FMD in meta-regression 
analyses80. By contrast, baEID-FMD did not differ 
between patients with SLE and healthy individuals80. 
These findings led to the conclusion that detection of 
eNO release from endothelium using baED-FMD is a 
more reliable method of assessing endothelial function 
than measurement of baEID-FMD in patients with SLE80. 
Subsequent studies were designed to address whether 
baED-FMD is a reliable biophysical marker of CVD risk 
and SLE-related co-morbidities. A study of 71 patients 
with SLE and 71 age-matched and sex-matched healthy 
individuals showed that although increased diastolic 
blood pressure and the presence of diabetes mellitus were 
associated with reduced baED-FMD in patients with SLE, 
history of lupus glomerulonephritis and increased eryth-
rocyte sedimentation rate were significantly related to 
reduced baED-FMD in patients with SLE, signifying that 
endothelial function is worse in patients with SLE who 
had a history of hypertension, diabetes mellitus and renal 
lupus, as well as those who were in a pro-inflammatory 
state, than in patients with SLE without these factors81,82. 
Furthermore, the influence of and interactions among 
premature menopause, glucocorticoid use and inflam-
mation in patients with SLE prompted exploration of 
whether CVD and bone loss are related83–86 (Box 2).

Specialist equipment that assesses FMD by measuring 
the peripheral artery tonometry (PAT) of digital arteries 
with the use of the EndoPAT 2000 technology (Itamar 
Medical, Israel) has become available79,80,83. Similar to the 
rationale of baED-FMD, PAT measures the reactive hyper-
aemia index (RHI) secondary to eNO release after a brief 
occlusion of the brachial artery87–89 (TaBle 1). Endothelial 
dysfunction measured by RHI with the EndoPAT tech-
nology was consistently shown to be more prevalent in 
patients with SLE than in healthy individuals87–90. In addi-
tion, a strong association between type 1 interferon acti-
vity and reduced RHI was evident in patients with SLE91, 
implying a substantial contribution of type 1 interferon to 
endothelial dysfunction in patients with SLE.

Mediators of endothelial dysfunction in SLE
Inflammation is central to the pathophysiology of SLE 
and has long been believed to have a key role in breach-
ing endothelial integrity, resulting in endothelial dys-
function, in patients with SLE38,92–95. The presence and 
persistence of anti-dsDNA antibodies, a pathophysio-
logical and classification hallmark of SLE, were shown to 

Box 1 | Traditional and non-traditional (SLE-related) CVD risk factors

Traditional
•	age3,56,181,189,190

•	elevated body mass index191

•	Hypertension192,193

•	Hyperlipidaemia194,195

•	Diabetes mellitus196,197

•	Impaired glucose tolerance198,199

•	Hyperhomocysteinaemia200,201

•	elevated very-low density lipoprotein
cholesterol202

•	Hyperhomocysteine202

•	High triglyceride levels202

•	obesity202,203

•	Cigarette smoking204

•	Post-menopausal status3,189

•	Reduced physical exercise205

•	Sedentary lifestyle206

Non-traditional, SLE-related
•	Genetic predisposition9–14

•	Increase in Sle disease activity16

•	lupus nephritis17,207

•	use of glucocorticoids52,208

•	The presence of anti-phospholipid 
antibodies and lupus anticoagulants18,81

•	Pro-inflammatory cytokines and
chemokines15,209–211

•	Neutrophil extracellular traps212,213

•	Co-stimulatory molecule 
upregulation214

•	adipokines, such as adipocyte fatty 
acid binding protein215,216

•	Increased oxidative stress217

•	Increased levels of oxidized lDl 
cholesterol and pro-inflammatory
HDl cholesterol218,219

•	Reduced serum paraoxonase220 
(an enzyme associated with 
HDl cholesterol that protects 
against oxidation of lDl particles)

CvD, cardiovascular disease; Sle, systemic 
lupus erythematosus.
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increase CVD risk in patients with SLE via an increase in 
the pro-inflammatory cytokine profile, oxidative stress 
and neutrophil extracellular traps (NETs) formation, 
which were associated with endo thelial activation and 
biophysical endothelial dysfunction96. Type 1 interferon 
is primarily produced by plasmacytoid dendritic cells 
and low-density granulocytes and is a pivotal chemo-
kine that drives the pathophysiology of SLE38,92–95. Type 1 
interferon, particularly interferon-α (IFNα), is highly 
toxic to the endothelium38,92–95 (Fig. 2).

Classically known to be atherogenic, low-density lipo-
protein cholesterol (LDL-c) negatively affects endothelial 
physiology in patients with SLE. In addition to LDL-c 
levels being elevated in patients with SLE97, LDL-c from 
patients with active SLE was shown to increase expres-
sion of VCAM1, monocyte chemoattractant protein 1 
(MCP1, also known as CC-chemokine 2) and matrix 
metalloproteinase 2 (MMP2, also known as 72-kDa 
type IV collagenase) by up to twofold in human aortic 
endothelial cells compared with LDL-c from patients 
with SLE in remission, despite comparable circulating 
LDL-c levels in both groups98, suggesting that high SLE 
disease activity elevates the pro-atherogenic property 
of LDL-c through increased expression of adhesion 
molecules on the endothelial cells. Pro-inflammatory 

cytokines, chemokines99 and antibodies such as anti- 
endothelial antibodies100 and anti-phospholipid anti-
bodies101 have been well described to be detrimental 
to the endothelium; in addition, the levels of specific 
soluble mediators such as annexin A5, platelet endothe-
lial cell adhesion molecule (PECAM1, also known as 
CD31) and activated leukocyte cell adhesion molecule 
(ALCAM, also known as CD166 antigen) have been 
shown to be increased and could impair endothelial 
function in patients with SLE102. Additionally, serum 
annexin A5 levels were found to be independently 
associated with endothelial dysfunction and increased 
carotid intima-media thickness in patients with SLE103.

Microparticles and NETs. Two important cellular events 
that have been increasingly described in the context of 
endothelial dysfunction in SLE deserve to be highlighted, 
namely, the formation of circulating plasma micro-
particles (MPs) and NETs (Fig. 2). Circulating plasma MP 
can directly lead to endothelial cell death in patients with 
SLE104. MPs are vesicles derived and released from apop-
totic cells by blebbing, in which membrane remodelling 
and exposure of phosphatidylserine on the outer plasma 
membrane lead to the formation of vesicles containing 
proteins and other molecules from the apoptotic parental 

Table 1 | Comparison of non-invasive methods to assess endothelial function

Technique Mechanism Procedure Advantages Disadvantages

baED-FMD A duplex ultrasonographic 
technique to determine 
post-occlusion release 
of eNO and its effect on 
brachial artery vasodilation

An ultrasonography probe is steadied by a stereotactic 
clamp that enables fine adjustment of the probe 
position. The probe images the brachial artery and 
positions electronic tracking gates at the media–
adventitia interface of opposing arterial walls. The 
equipment utilizes radiofrequency signals to measure 
vessel dimension in real time with 0.01-mm accuracy102. 
Reactive hyperaemia is induced by rapid inflation of a 
pneumatic cuff secured around the proximal forearm to 
a pressure of 50 mmHg above the SBP for 5 min, followed 
by deflation of the cuff. Proprietary baED-FMD software 
provides a real-time graphical display of minute 
vasodilation from baseline, cuff occlusion, vasodilation 
and recovery, and calculates the FMD values

Non-invasive; direct 
measurement of 
eNO, which reflects 
endothelial function 
and integrity

Operator dependent; 
costly equipment; 
narrow dynamic 
range of the vascular 
response; low 
signal-to-noise ratio

baEID-FMD A duplex ultrasonographic 
technique to determine 
the vasodilation of the 
brachial artery by 
exogenous (sublingual) 
administration of NO

The procedure is similar to baED-FMD, except 
that individuals are required to take a sublingual 
administration of nitroglycerin as a source of NO, 
followed by measurement of FMD of the brachial artery 
as described for baED-FMD103. If performed alone, 
measuring baEID-FMD does not require brachial artery 
occlusion. Many centres perform baEID-FMD after 
baED-FMD, when patients have rested for 10 min to 
enable normalization of vascular tone

Non-invasive Operator dependent; 
costly equipment; 
no direct eNO 
measurement; narrow 
dynamic range of the 
vascular response; low 
signal-to-noise ratio

PAT A technique that measures 
changes of digital pulse 
waveforms, mediated 
by the release of eNO 
following occlusion of 
the brachial artery, from 
peripheral arterial tone 
signals of the digits.

Finger probes are placed on symmetric fingers, with 
a sphygmomanometer cuff placed on one arm and 
the other arm serving as a control. PAT is continuously 
measured for 15 to 20 min. Around 5 min into the 
measurement period, the sphygmomanometer cuff is 
inflated for 5 min to occlude the brachial artery until 
the SBP is raised above baseline in the test arm. At the 
end of the occlusion period, the cuff is released and RHI 
is captured as an increase in PAT signal amplitude by 
calculating the post-occlusion to pre-occlusion ratio112

The index finger is recommended for measurement of 
RHI. If the index finger is not suitable, other fingers can 
be used except for the thumb. The same finger should 
be used for measurement in the control arm

Totally operator 
independent; 
less-costly 
equipment; rapid 
measurement of 
endothelial function

Investigative tool, 
although it seems 
promising for its 
ability to predict 
cardiovascular 
outcome

baED-FMD, endothelium-dependent flow-mediated dilatation of brachial artery; baEID-FMD, endothelium-independent flow-mediated dilatation of brachial 
artery; eNO, endothelium-derived nitric oxide; NO, nitric oxide; PAT, peripheral artery tonometry; RHI, reactive hyperaemic index; SBP, systolic blood pressure.
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cell; the contents and composition of MPs enable their cell 
of origin to be identified105. The extruded proteins that 
MPs often carry are biologically active substances, such 
as inflammatory cytokines and nucleic acids, and even 
organelles, such as mitochondria, that can serve as a plat-
form conducive to the formation of MP-immune com-
plexes (MP-ICs), complement activation, inflammation, 
pro-coagulant activity and vascular thrombosis106–110. As 
a result of the increased release and reduced clearance 
of apoptotic cells, which are central to the pathogene-
sis of SLE111, the levels of circulating MPs are elevated 
in patients with SLE104. A longitudinal study demon-
strated that although an increase in circulating endothe-
lial cell-derived MPs (which are positive for CD31 and 
annexin V and negative for CD42b (also known as 
Platelet glycoprotein Ib alpha chain), as identified by flow 
cytometry) was significantly associated with reduced 
baED-FMD in patients with SLE, subsequent reduction 
of SLE disease activity was related to the reduction of the  
level of circulating endothelial cell-derived MPs and  
the increase in baED-FMD112, signifying a negative effect 
of SLE disease activity on endothelial cell-derived MPs 
and endothelial function. Mechanistically, upon internal-
ization by endothelial cells of MPs and MP-ICs derived 
from patients with SLE, the expression of adhesion mole-
cules such as CD54 (also known as ICAM1), CD102 (also 
known as ICAM2) and CC-chemokine ligand 2 (CCL2) 
is increased on endothelial cells, along with increased 
production of pro-inflammatory mediators includ-
ing IL-6 and CCL5, leading to increased adherence of 
classical monocytes on the endothelium, which triggers 
endothelial injury113. Furthermore, SLE-derived MPs and 
MP-ICs increased disruption of endothelial microstruc-
ture, such as depolymerization of actin filaments and for-
mation of intracellular spaces that promote endothelial 
cell permeability and death113. Of note, the origin of MPs 
is not restricted to endothelial cells: MPs derived from 
platelets, monocytes, granulocytes and lymphocytes were 

found to be increased in patients with SLE114, although 
their relevance to CVD risk in patients with SLE has not 
been adequately established.

NETs are an antimicrobial mechanism character-
ized by the formation of traps that comprise microbi-
cidal proteins such as LL37 (also known as cathelicidin 
antimicrobial peptide), human neutrophils peptides 
and DNA115. The presence of antibodies against ribonu-
cleoproteins triggers NETs formation in patients with 
SLE116. NETs directly lead to endothelial cell apoptosis117; 
endothelial cell death through endothelial MMP2 
activation118; activation of platelets, coagulation cascade 
and thrombosis via the release of serine proteases that 
degrade tissue factor pathway inhibitor and activate fac-
tor XII119,120; and vascular leakage121 (Fig. 3). Indirectly, 
NETs induce massive IFNα production by plasmacytoid 
dendritic cells and low-density granulocytes122 that per-
petuates IFNα-induced endothelial toxicity123, mediates 
oxidation of HDL-c and impairs cholesterol outflow 
capacity124 (Fig. 2).

Endothelial progenitor cells in SLE
EPCs originate from the bone marrow, can participate in 
vasculogenesis through migration, replication and ter-
minal differentiation into mature endothelial cells, and 
were initially thought to be restricted to the embryonic 
state125. EPCs were subsequently described in the post-
natal state through the isolation of either haematopoietic 
progenitor cell antigen CD34+ or fetal liver kinase 1 (also 
known as vascular endothelial growth factor receptor 2 
or CD309)-positive (FLK1+) circulating cells126. These 
cells can expand in culture, express the endothelial 
markers CD31 and E-selectin, produce endothelial nitric 
oxide and incorporate acetylated LDL126. This discov-
ery was followed by a massive expansion of the use of 
EPCs in both regenerative medicine and as a marker 
of disease activity in many conditions, including car-
diovascular and autoimmune diseases127. However, the 
precise methodology and criteria by which these rare 
populations of circulating EPCs are identified and char-
acterized have not been formally established, leading to 
conflicting reports on their ability to incorporate into 
vasculature128, their role and nature in disease states129,130 
and their different circulating levels in patients with SLE 
compared with healthy donors31–35,37.

EPC measurement and identification techniques. Several 
methods have been described to identify EPCs (TaBle 2). 
One method involves in-bulk culturing of circulat-
ing peripheral blood mononuclear cells (PBMCs) on 
fibronectin and endothelial cell growth medium; how-
ever, this method results in high contamination rates of 
myeloid monocytic cell types that can adopt an endothe-
lial phenotype by the uptake of platelet-associated CD31, 
or even by expressing von Willebrand factor (vWF), 
incorporating acetylated LDL and upregulating endothe-
lial nitric oxide expression, when circulating cells are 
cultured in the presence of vascular endothelial growth 
factor (VEGF)131–133. These adherent contaminating 
monocytic cells are now recognized as myeloid angio-
genic cells (MACs), which have a role in potentiating 
vasculogenesis in a paracrine fashion134.

Box 2 | CVD and bone loss in SLE

The first study in 2001 that assessed carotid plaque index, carotid intima-media 
thickness and bone mineral density (BMD) of the hip and spine with dual X-ray 
absorptiometry (DeXa) of the lumbar spine and hip in 65 young women with systemic 
lupus erythematosus (Sle) found a significant relationship between high carotid plaque 
index and low lumbar BMD. In 13 of these 65 patients, there was a significant association 
between high coronary calcium score (as measured by electron beam CT) and low 
lumbar BMD83. The association between cardiovascular disease (CvD) risk and vertebral 
bone loss was further supported by the examination of endothelial function and BMD.  
In a study of 55 patients with Sle and 55 age-matched and sex-matched healthy 
volunteers, reduced endothelium-dependent flow-mediated dilatation of brachial 
artery (baeD-FMD) was associated with reduced lumbar BMD in patients with Sle,  
after adjustment for confounding factors including age, duration of Sle, glucocorticoid 
use, high-sensitivity C-reactive protein level and menopausal status84. In addition to 
confirming the association between inflammation and impaired endothelial function, 
these novel findings imply a link between endothelial dysfunction and vertebral bone 
loss that was independent of the effect of glucocorticoids and inflammation in patients 
with Sle84. Stemming from these results, the postulation that endothelial nitric oxide 
synthase (eNoS) might have a role in promoting the homeostasis of the endothelium 
and osteoblasts remains to be explored. Functional variants of the exons and introns of 
NOS3 (encoding eNoS) have been shown to reduce eNoS expression85,86. Interestingly, 
several NOS3 polymorphisms have been demonstrated to be significantly more 
prevalent in patients with Sle than in healthy individuals and are, therefore, considered 
to be risk factors for Sle85,86.
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Another method of identifying putative EPCs is a 
flow-cytometry based approach, which enables circu-
lating angiogenic cells (CACs) to be identified among 
the PBMCs by their co-expression of CD34, CD133 
(also known as prominin 1), CD309 and other CAC 
markers135. Although the flow-cytometry approach is 
frequently adopted in EPC research pertaining to SLE 
and other autoimmune conditions, two major issues 
exist. First, none of the described cell-surface mark-
ers is specific for EPCs135. Second, CACs, the CD34+–
CD133+–CD309+ population, are exceedingly rare, with 
mean levels ranging from 0 to ~500 cells per millilitre of 
peripheral blood36. These limitations hamper the efforts 
to identify and quantify the true EPCs within the PBMC 
population, despite the high volume of blood required 
for high-quality flow-cytometry analysis.

Last, a more robust method identifies EPCs through 
their ability to form colonies, self-renew (through 
re-plating), express EPC markers, form tubing in vitro 
and participate in vessel regeneration in vitro136–138. These 
cells have been termed endothelial colony-forming 
cells (ECFCs)136–139. The terminologies MAC, CAC 
and ECFC have now been adopted in an international 

consensus on the nomenclature of EPCs139. Despite the 
heterogeneity of methods, the majority of studies using 
either CACs or ECFCs has demonstrated reduced EPC 
function in patients with SLE compared with healthy 
individuals33,34,140–143, although a minority did not144,145.

To date, there is no standardized method of identi-
fying and quantifying circulating EPCs in patients with 
SLE. In 2009, the European Alliance of Associations for 
Rheumatology Scleroderma Trials and Research group 
(EUSTAR) published a group statement and recommen-
dations to unify the methodology of EPCs quantification, 
with the aim of standardizing EPC research primarily 
conducted for systemic sclerosis146. In brief, the EUSTAR 
recommendation for EPC identification and quantifica-
tion via flow cytometry involves the determination of 
cells that co-express CD34, CD133 and CD309 with a 
multicolour fluorescent staining approach, and the neces-
sity to combine with a viability marker, collect a large 
number of events (cells detected), use Fc blockers prior 
to immunostaining to minimize non-specific binding, 
exclude lineage-positive cells (that is, lineage-committed 
cells expressing CD3+ (also known as T cell surface glyco-
protein CD3), CD19+ (B lymphocyte antigen CD19), 
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Fig. 2 | Type 1 interferon and other key mediators detrimental to endothelial cells and EPCs. Angiogenic T (Tang)  
cells, working in concert with IL-8 and vascular endothelial growth factor (VEGF), promote differentiation and function of 
endothelial progenitor cells (EPCs) (1). Interferon-α (IFNα) inhibits pro-angiogenic transcriptomes in circulating mononuclear 
cells induced by IL-1β, resulting in reduction of expression of VEGF (2). IFNα directly inhibits endothelial cell proliferation  
and migration by upregulating the transcription of angiostatic genes including TRAIL (also known as TNFSF10), CXCL10 and 
CXCL11 in circulating mononuclear cells (3)92. IFNα inhibits endothelial cell growth and tube formation by inducing the 
promyelocytic leukaemia protein, which stimulates STAT1 and STAT2 and feeds back negatively with STAT-3 (4)93. Neutrophil 
extracellular traps (NETs) cause endothelial cell apoptosis through endothelial MMP2 activation (5). NETs induce massive 
production of IFNα by low-density granulocytes (LDGs) and plasmacytoid dendritic cells (pDCs), which perpetuates 
IFNα-induced endothelial toxicity (6). IFNα causes direct apoptosis of endothelial cells (7)38. IFNα induces myeloid dendritic 
cells (mDCs) in diseased endothelium and atherosclerotic plaque to produce various pro-inflammatory cytokines and  
matrix metalloproteinases (MMPs) that destabilize plaque (8)94. (9) IFNα induces platelet aggregation and thrombosis via  
a P-selectin-mediated mechanism on diseased endothelium (9)95. Microparticles cause apoptosis of endothelial cells (10). 
Microparticles bind with antibodies to form immune complexes and induce expressions of adhesion molecules and increase 
production of pro-inflammatory cytokines and chemokines in endothelial cells, leading to increased adherence of classical 
monocytes on the endothelium and endothelial injury (11). BAFF, B cell activating factor; HGF, hepatocyte growth factor.

www.nature.com/nrrheum

R e v i e w s

292 | May 2022 | voluMe 18 



0123456789();: 

CD14+, or CD56+ (neural cell adhesion molecule 1)) and 
involve an investigator experienced in flow cytometry146. 
In 2012, the EUSTAR recommendation was validated, 
with an additional recommendation of calibration with 
fluorospheres to obtain the absolute number of circulat-
ing EPCs per millilitre of peripheral blood147. Although 
not all studies addressing EPCs in patients with SLE 
strictly followed the EUSTAR recommendations, studies 
that involved identification of CACs co-expressing CD34 
and either CD309 or CD133 or both revealed relatively 
consistent reductions of CAC level in patients with SLE 
compared with healthy individuals31–37. On the basis  
of our experience (A.M. and colleagues), the scarcity of 
CACs and the fact that CD133 and CD309 are weakly 
expressed (leading to missed events) often compromise 
the accuracy and validity of CAC quantification, even 
when the EUSTAR recommendations were followed. 
To circumvent this limitation, the florescent-minus-one 
(FMO) technique involved in the cell staining and gat-
ing step was adopted. This technique involves the anal-
ysis of samples stained for all fluorophores in the panel 
except for one, to determine where the gates for each 
signal should be set and improve the accuracy of signal 
detection36. With this modified approach, the levels of 
CACs, defined as Lin− (lineage-negative) DAPI− (that 
is, viable cells) CD34+CD133+CD309+ and identified 
using the FMO method, were found to be significantly 
lower in patients with SLE than in age-matched and 
sex-matched healthy counterparts36. Interestingly, when 
applying meta-regression analysis in the case–control 
study and published data36, the use of antimalarial drugs 
was found to be associated with a higher level of CACs 
in patients with SLE who took these drugs than in those 
who did not36. Although the long-observed benefits of 
antimalarial drugs have been well established in patients 
with SLE, the potential mechanistic effect of these agents 

on EPCs that leads to cardiovascular benefits is worth 
further exploration.

EPC number and function reduction in SLE
A few observations explain the general reduction in cir-
culating numbers of EPCs in patients with SLE. Altered 
morphology35 and reduced expression of VEGF and 
hence reduced VEGF-driven mobilization of EPCs33,148 
have been demonstrated in patients with SLE. In addi-
tion to reduced quantity, the crucial functions of EPCs, 
including migration and tube- and colony-forming 
abilities, were found to be reduced in patients with SLE 
compared with healthy individuals33,149.

Type 1 interferon exerts a similar effect on EPCs 
to the effect it has on endothelial cells, as exemplified 
in murine lupus models and patients with SLE. When 
EPCs isolated from C57BL/6 mice were co-cultured with  
plasmacytoid dendritic cells that had been treated 
with double-stranded DNA that triggered IFNα pro-
duction, apoptosis and senescence of EPCs were 
increased, and EPCs were arrested at the G0/G1 phase150. 
Treatment of pristine-induced murine lupus mice with 
IFNα-neutralizing antibodies rescued all these in vivo 
changes of EPCs induced by IFNα and activated plas-
macytoid dendritic cells150. In an IFNα receptor knock-
out murine model, the numbers and functions of EPCs 
(in terms of differentiation and neoangiogenesis) were 
increased compared with New Zealand mixed 2328 
lupus-prone mice with intact interferon receptors, along 
with improved ED vasorelaxation151. Exposure to IFNα 
impaired ED vasorelaxation and EPC function and 
accelerated vascular thrombosis and platelet activation 
in New Zealand mixed 2328 lupus-prone mice151.

Studies in human SLE confirmed the deleterious 
effect of type 1 interferon on EPCs demonstrated in 
animal models34,152. Upregulation of the genes encoding 
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IFNα was observed in EPCs in patients with SLE, which 
suppressed VEGF and hepatocyte growth factor expres-
sion and subsequent angiogenic activity33. IFNα induces 
EPC apoptosis, reduces proliferation of EPCs33,34 and 
inhibits pro-angiogenic transcriptomes induced by 
IL-1β, leading to reduction of VEGF expression and 
increase of IL-18-induced inflammasome activation142,143, 
a crucial downstream pathway that promotes aberrant 
vasculogenesis. Inhibition of inflammasome activation 
by caspase 1 blockage restores EPC differentiation142. 
B cell activating factor (BAFF, also known as tumour 
necrosis factor ligand superfamily member 13B), which 
is overexpressed in patients with SLE153, plays a part in 
reducing EPC quantity and function. BAFF receptors 
are expressed on EPCs and mediate EPC apoptosis when 
engaged with BAFF140. EPC apoptosis and impairment of 
colony structure were shown to be reversible by treating 
EPCs from patients with SLE with belimumab, a fully 
humanized monoclonal antibody against BAFF, suggest-
ing that BAFF has a pro-apoptotic effect on EPCs140. Last, 
TNF has been shown to suppress proliferation, migration 
and tube formation and to increase apoptosis of EPCs154. 
As serum TNF levels are increased in patients with 
SLE155, whether TNF exerts a negative effect on EPCs in 
patients with SLE requires further study.

Of note, circulating angiogenic T (Tang) cells, which 
are CD3+CD31+CXCR4 (CXC-chemokine receptor 4)+,  
are implicated in repair of damaged endothelium by 
orchestrating the functions of EPCs156. Working in concert 
with pro-angiogenic factors including IL-8 and VEGF, 
Tang cells increase differentiation and function of EPCs156 
(Fig. 2). In patients with SLE, although the overall Tang cell 
levels were increased compared with those in healthy 
individuals157,158, expansion of Tang cells was observed in 
the subset of Tang cells that exhibited immunosenescent 
features, as indicated by the loss of T cell-specific sur-
face glycoprotein CD28. Tang cells were shown to exert an 
anti-inflammatory effect on endothelial cells and might 

mediate EPC function through the action of IL-8 (reF.153). 
High SLE disease activity was related to reduced circulat-
ing Tang proportion, and in young patients with SLE who 
had not experienced any cardiovascular events, contrac-
tion of the Tang compartment occurred early in the course 
of SLE and preceded overt cardiovascular events159.

Potential therapies to restore EPCs
To date, there have been to our knowledge no clinical tri-
als specifically designed to evaluate the long-term cardio-
vascular outcome of pharmacological EPC manipulation 
in patients with SLE. Yet, a limited number of short-term 
observational studies that attempted to address the effects 
of immunomodulatory and immunosuppressive thera-
pies on the number and function of EPCs in patients with 
various autoimmune conditions provide preliminary 
concepts on the potential of therapeutic manipulation 
of EPCs in autoimmunity160–164. For example, the use of 
intravenous immunoglobulins and aspirin was shown to 
be associated with an increase in EPC proliferation and 
migration in children with Kawasaki disease after 7 days 
of treatment, along with the significantly correlated 
reduction of serum inflammatory markers including 
TNF and high sensitivity C-reactive protein160.

The potential benefits of B cell depletion therapy 
in endothelial activity and function have been demon-
strated161. In a mechanistic study, in vitro treatment of 
human umbilical vein endothelial cells with sera from 
patients with SLE and RA before and after therapy with 
rituximab (a chimeric antibody against the B cell sur-
face marker CD20) revealed a significant reduction 
in the expression of endothelial cell activation mark-
ers, including VEGF, IL-8, ICAM1 and endothelial 
nitric oxide synthase (eNOS), in umbilical vein endo-
thelial cells that had been exposed to rituximab-treated 
sera161. In a clinical study, which was limited to assess-
ment of patients with RA, treatment with rituximab  
(1 g, 2 weeks apart) improved endothelial function162 and 

Table 2 | Identification and properties of putative EPCs

Cell 
population

Phenotype Identification procedure Advantages Disadvantages

CACs CD34+, CD133+, 
CD309+

Flow cytometry with 
multicolour immunostaining 
for CD34+CD133+CD309+ 
cells from PBMCs

Direct quantification of EPCs in 
circulating blood; EPC quantification 
can be done within a day; EUSTAR 
recommendations have been 
established for comparison between 
studies, although they are primarily 
meant for research of patients with 
systemic sclerosis

CACs are rare in the population of 
circulating PBMCs; require expertise 
in flow cytometry; identifying 
CACs as EPCs is still being debated; 
conflicting data on CAC ability to 
differentiate into endothelial cells,  
as some remain haematopoietic

MACs CD45+, CD14+, CD31+, 
CD146−, CD34−

Culture of PBMCs on 
fibronectin-coated plates in 
EGM with 2% fetal calf serum. 
Colonies emerge within a 
week as early outgrowth cells

MACs are generally believed to be 
circulating early EPCs. MACs can 
promote angiogenesis through a 
paracrine mechanism

MACs are haematopoietic, not 
endothelial in origin; MACs per se do 
not have the capacity to differentiate 
into endothelial cells

ECFCs CD31+, CD105+, 
CD146+, aCD34+, 
CD309+, CD144+, 
vWF+, CD14−, CD45−

Culture of PBMCs on 
collagen-coated plates in 
EGM with 10% fetal calf 
serum. Colonies emerge in 
2–4 weeks

ECFCs possess potent intrinsic 
angiogenic capacity, which can give 
rise to genuine endothelial cells; 
these cells are ‘bona fide EPCs’ owing 
to their capability to form vascular 
networks in vitro and in vivo

Long and tedious culture process 
from plating and re-plating until 
ECFC emergence, with identification 
taking up to 4 weeks

CAC, circulating angiogenic cell; ECFC, endothelial colony-forming cell; EGM, endothelial-cell growth medium; EPC, endothelial progenitor cells; EUSTAR, European 
Scleroderma Trials and Research; MAC, myeloid angiogenic cell; PBMC, peripheral blood mononuclear cell; vWF, von Willebrand factor. aCD34 expression on ECFCs is 
reduced during in vitro expansion.
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reduced clinical RA disease activity and serum levels of  
inflammatory markers162.

The effects of anti-IFNα and anti-BAFF therapies 
on the quantity and function of EPCs in SLE have been 
addressed. In addition to reaching the primary end 
points of reducing SLE disease activities in their respec-
tive trials163,164, both anti-IFNα and anti-BAFF therapies 
were shown to normalize the quantity and function of 
SLE EPCs; the potential benefits of the anifrolumab  
(a human monoclonal antibody against type I interferon 
receptor subunit 1) and belimumab for cardiovascular 
protection in SLE are worth further exploration.

Tofacitinib, one of the Janus kinase (JAK) inhibi-
tors, has been evaluated for its efficacy in ameliorating 
murine lupus165 and safety in patients with SLE87. The 
inhibition of the JAK–STAT pathway is therapeutically 
relevant because many pro-inflammatory cytokines, 
chemokines and growth factors involved in the patho-
physiology of SLE, including type 1 interferon, are impli-
cated in SLE-related inflammation and cardiovascular 
pathology166. In addition to a significant reduction in SLE 
disease activity, including lupus-related nephritis and 
dermatitis as well as autoantibody and pro-inflammatory 
cytokine production, treatment with tofacitinib in MRL/
lpr lupus-prone mice led to a reduction in NETs forma-
tion, an increase in endothelial cell differentiation and 
an improvement of ED vasorelaxation165. In a phase I 
double-blind controlled trial that evaluated the safety of 
tofacitinib in patients with SLE, tofacitinib (5 mg twice 
daily) led to the improvement of endothelial-dependent 
vasorelaxation (assessed by PAT) and other markers of 
CVD risk, including HDL-c, cholesterol efflux capa-
city and arterial stiffness, compared with the placebo 
group87. Intriguingly, improvement of some of the CVD 
risk surrogates, such as RHI and arterial stiffness, was 
significantly more apparent in patients with SLE bearing 
the STAT4 risk allele (rs7574865)87 — an allele that was 
shown to be associated with a significantly increased risk 
of CVD in patients with SLE167.

In addition to immunomodulatory therapies, health 
supplements and therapeutic agents for CVD and related 
comorbidities were shown to exert beneficial quan-
titative and qualitative effects on EPCs. For instance, 
vitamin D increased the proliferative and migratory 
activities of EPCs that were cultured from lupus PBMCs 
from mice and patients24,168,169. Furthermore, vitamin D 

upregulated NO production in EPCs, which was cor-
related with increased FMD in patients with SLE168. 
Indeed, supplementation of vitamin D to SLE EPCs with 
calcitriol restored angiogenicity with CXC-chemokine 
ligand 10 (CXCL10) reduction169. The definite beneficial 
effects in bones and the potential favourable effect on 
EPCs render vitamin D supplementation in patients with 
SLE an attractive strategy (Fig. 4).

Last, there are functional benefits to endothelial reac-
tivity and EPCs related to the use of statins in myocar-
dial infarction and stroke170,171, angiotensin II receptor 
antagonists in patients with type II diabetes mellitus and 
myocardial infarction172,173, antiplatelet agents in CVD174 
and a variety of anti-glycaemic agents, including gli-
clazide, pioglitazone and sitagliptin, in type II diabetes 
mellitus175–177.

Of note, calcineurin inhibitors that were shown 
to be efficacious and safe in the treatment of lupus 
nephritis178,179 potentially worsen cardiovascular out-
come via their negative effects on EPCs. For example, 
cyclosporine A was shown to suppress the proliferation 
and increase the apoptosis of EPCs in vitro, possibil-
ity through reduced NO production in EPCs180. EPCs 
isolated from umbilical cord blood mononuclear cells 
revealed reduced proliferation, migration and tube for-
mation upon in vitro treatment with cyclosporine A and 
tacrolimus181. Furthermore, these calcineurin inhibitors 
increased NF-κB p65 phosphorylation and nuclear 
translocation and upregulated expression of the mRNAs 
for TNF, IL-6, ICAM and VCAM mRNA expression181. 
These observations collectively suggest that calcineurin 
inhibitors mitigate the proliferation and function of 
EPCs and augment pro-inflammatory signalling and 
apoptosis of EPCs, potentially engendering adverse 
cardiovascular outcomes in addition to their off-target 
lipidogenic and diabetogenic effects.

FMD and EPCs as prognostic biomarkers
Although using FMD and EPCs as markers to diagnose 
endothelial dysfunction and prognosticate for CVD is 
practically feasible and scientifically sound, there are 
some foreseeable challenges to the application of these 
approaches in patients with SLE. As for FMD, one of 
the major drawbacks that confound the interpretation 
of baED-FMD is that its evaluation is highly opera-
tor dependent, in addition to the technical difficulty 

Prognostication 
for cardiovascular 
disease in patients 
with SLE

• Anti-BAFF agent
• Anti-IFNα agents
• Vitamin D
• JAK inhibitors
• Angiotensin II antagonists
• Antiplatelets
• Hypoglycaemic drugs

Therapeutic approaches to
increasing EPC quality and quantity

Ongoing work to be done
 to validate EPCs
as prognostic biomarkers

CACs with FMO 
technique and ECFCs

Multi-centre
standardization

↑ EPCs

Fig. 4 | Regulation of EPCs by different therapeutic approaches and their prognostic potential for CVD in SLE. 
Improvements in the function and quantity of endothelial progenitor cell (EPCs) are observed with systemic lupus 
erythematosus (SLE)-related and non-SLE-related therapeutic approaches in patients with SLE. Further multi-centre 
validation work that involves flow cytometry (with the florescent-minus-one (FMO) technique) for the enumeration  
of circulating angiogenic cells (CACs) and assessment of endothelial colony-forming cells (ECFCs) is fundamental to 
prognosticating cardiovascular disease in patients with SLE. BAFF, B cell activating factor; CVD, cardiovascular disease; 
IFNα, interferon-α; JAK Janus kinase.
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in tracking and recording the brachial artery wave-
forms generated from an unsteady forearm during the 
assessment procedure. To mitigate the issue of operator 
dependency, measurement of RHI with PAT is a newer 
alternative87–89. Similar to FMD, whereas endothelial dys-
function measured by RHI was consistently shown to 
be more prevalent in patients with SLE than in healthy 
individuals87–89, further validation is required to advo-
cate RHI use as a prognostic biophysical marker of 
CVD in patients with SLE, despite the absence of oper-
ator dependency, shorter assessment time and lower 
operative cost than baED-FMD (TaBle 1).

As elaborated in previous sections, no standardized 
method exists to identify EPCs that are consistently relia-
ble for prognostication for CVD in patients with SLE. The 
robustness of ECFCs as putative EPCs is compromised 
by the tedious culture methods, whereas the extreme rar-
ity of CACs augments the technical difficulty for their 
identification. Although the FMO technique minimizes 
inaccurate enumeration of CACs as a result of their 
scarcity in the peripheral blood and weak expressions of 
CD133 and CD309, the necessary expertise of the opera-
tor in designing fluorochrome-conjugated antibody pan-
els, cellular event gating and subsequent flow cytometric 
analyses implies that methodological validation across 
different centres is fundamental before a scientifically 
robust and practical consensus can be reached. Taking 
into account all the potential technical difficulties and 
applications discussed, it is likely that the enumeration of 
CACs identified by multi-colour flow cytometry follow-
ing the EUSTAR recommendations and application of 
the FMO staining and gating technique, coupled with the 
isolation and characterization of ECFCs via meticulous 
culture techniques and assays, will be the foundations 
for CVD prognostication in patients with SLE33,34,140–143 
(Fig. 4). The standardization and implementation of 
these techniques for studying EPCs in larger cohorts  
of patients with SLE and the collection of long-term pro-
spective data are possibly the pre-requisites for advocat-
ing the potential of EPCs as a prognostic biomarker of 
CVD in SLE (Fig. 4). Nevertheless, a tremendous ongoing 
effort is required to align centres with interest in EPC 
research to reach a consensus of the standardized meth-
odologies in flow cytometry and ECFC culture, because 
these methodologies require sophisticated laboratory 
conditions and expertise, which might not be readily 
accessible in some centres.

Although the bone marrow is likely to be the main 
source of circulating ECFCs, there is emerging evidence 
of small foci of ECFCs in different tissues that contribute 

towards vascular repair in conjunction with MACs, with 
several lines of evidence pointing towards their collab-
orative role in tissue repair182,183. These tissue-resident 
ECFCs are activated where there is tissue injury to repair 
the vasculature, with their function and quantity varying 
through different tissues and disease states184,185. With 
the development of sensitive methods of assessing both 
number and function of circulating ECFCs, such as with 
a microfluidic capture system186, a more complete picture 
of the ECFC population can be determined through a 
much lower blood volume. Correspondingly, the devel-
opment of single-cell genomics technologies should 
enable the heterogeneity and rarity of these ECFCs to 
be investigated with regard to their differentiation tra-
jectories and hierarchies, along with probable cell–cell 
interactions, in the near future187,188. These new develop-
ments may usher in a new understanding of the role of 
ECFCs in SLE and other disease states.

Conclusion
Although traditional CVD risk factors (which have 
increased prevalence in individuals with SLE) lead 
to excess cardiovascular morbidity and mortality in 
patients with SLE, the mechanisms leading to the 
heightened prevalence and incidence of CVD beyond 
the effect of traditional risk factors remain incompletely 
understood. Among these mechanisms, the reduced cir-
culating level and impaired function of EPCs in vitro and 
impaired biophysical endothelial function are postulated 
to have a negative effect on the cardiovascular outcome 
of patients with SLE. With properly conducted prospec-
tive observational studies and clinical trials based on a 
consensus with a clear definition of EPCs and stand-
ardized methodologies for endothelial function evalu-
ation, quantitative and functional parameters of EPCs 
and endothelial function measures with baED-FMD 
can be potential prognostication biomarkers of CVD in 
patients with SLE (Fig. 4). Taking together the promising 
in vitro findings and murine model studies related to the 
reversal of reduction of EPC number and function with 
anti-type 1 IFNα and anti-BAFF therapies, it is worth 
studying the potential cardiovascular benefits of the use 
of anti-IFNα and anti-BAFF agents and JAK inhibitors 
in patients with SLE. In concert, cost-effective and safe 
therapeutic strategies such as vitamin D supplementa-
tion and antimalarial drugs are highly recommended for 
their potential cardiovascular benefits in patients with 
SLE for whom these treatments are not contraindicated.
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Tofacitinib was the first Janus kinase (JAK) 
inhibitor to be approved for the treatment 
of rheumatoid arthritis (RA) nearly 10 years 
ago. This oral medication, which diminishes 
the activity of JAK1, JAK2 and JAK3, 
was proven in phase III trials to offer an 
alternative of similar efficacy to injectable 
biologic DMARDs (bDMARDs). Since that 
time, other, more selective JAK inhibitor 
compounds have been approved, each with 
the idea that greater selectivity for one or 
more kinases might offer improvements in 
efficacy or safety (Fig. 1). So, where are we 
today in understanding the relative safety 
of these compounds? In the ‘old days’ we 
compared the safety of TNF inhibitors with 
non- biologic DMARDs. Over time, as more 
bDMARDs were approved, we began to 
shift our frame of reference and compare 
the safety of TNF inhibitors with other 
bDMARDs, and now compare JAK inhibitors 
and their relative safety with the bDMARDs. 
With so many choices for patients starting 
therapy, these relative comparisons are 
important, and very recently, the large 
post- marketing ORAL Surveillance 
(ORALSURV) trial has reported its outcomes 
in the peer- reviewed literature1. Although 
ORALSURV studied only patients with RA 
aged >50 years old with cardiovascular risk 
factors who started treatment with either 
tofacitinib or anti-TNF therapy (etanercept 
or adalimumab, depending on the region), 

Patients on background methotrexate 
therapy were randomly allocated to 
receive treatment either with tofacitinib 
at a dose of 5 mg or 10 mg twice daily 
or with a TNF inhibitor (etanercept or 
adalimumab, depending on the region). 
The trial’s primary end points were major 
adverse cardiovascular events (MACEs) 
and malignancy, and the trial was designed 
as an event- driven, non- inferiority study 
with regard to these two outcomes. The trial 
could only be concluded when at least 1,500 
patients had been followed for 3 years, and 
103 MACEs (including cardiovascular death, 
non- fatal myocardial infarction and non- fatal 
stroke) and 138 malignancies (excluding 
non- melanoma skin cancers) had occurred. 
Non- inferiority of the tofacitinib regimens 
to the TNF inhibitor control regimen was to 
be concluded if the upper confidence limits 
for the hazard ratios for malignancy (total 
time analysis) or MACEs (on- treatment time 
analysis) were less than 1.8 (reF.4).

Interestingly, in 2019, during the 
ORALSURV trial, a statistically significant 
elevation in the risk for pulmonary 
embolism was noted with the 10- mg dose 
of tofacitinib relative to TNF inhibitor 
treatment, and all patients on this dose 
were moved to the 5- mg dosage, although 
their data continued to be analysed as part 
of the 10- mg cohort1. This switch perhaps 
complicates interpretation of dose effect, 
and potentially brings the risk estimates 
for the two doses closer together, given 
the blending of these groups. Although 
this study was conceived primarily with 
cardiovascular and malignancy outcomes 
in mind, the study focused on the usual 
adverse events of interest for JAK inhibitor 
therapies: SIEs, herpes zoster infection, 
venous thromboembolism (VTE), MACEs, 
malignancy and mortality. For each of these 
adverse events, we lend context below, 
and in the end, conclude that the data are 
not dissimilar to those from the original 
developmental programme, which suggested 
additional safety concerns at the 10- mg 
dosage and that resulted in the 5- mg twice 
daily dosage as the approved dose for RA.

Infection
ORALSURV’s findings are consistent with 
clinical- trial and real- world studies of JAK 
inhibitors to date, and highlight that JAK 

the FDA extrapolated the study’s findings 
beyond tofacitinib to all JAK inhibitors 
currently in use for immune- mediated 
inflammatory diseases, and restricted use 
of this class of drugs to patients with RA 
only after TNF inhibitor failure2. While the 
practicing rheumatologist attempts to digest 
this information, which will no doubt change 
clinical practice recommendations, it is 
useful to put the ORALSURV findings in the 
context of the JAK inhibitor studies to date.

The ORALSURV study
In 2012, when tofacitinib received FDA 
approval for use in RA, the agency mandated 
the drug’s manufacturer, Pfizer, to conduct 
an additional post- marketing clinical trial 
owing to concerns regarding a potential 
increased risk of cancer, cardiovascular 
events and serious infections (SIEs) observed 
in the developmental programme in patients 
who received the higher, unapproved dose 
of 10 mg twice daily. Dose- dependent safety 
signals were noted in relation to a number of 
adverse events of special interest, leading  
to the conclusion that the benefit:risk ratio  
of tofacitinib was optimal with 5 mg twice 
daily, leading to the approval of only  
this dosage for use in RA3. ORALSURV 
was this FDA-mandated post- marketing 
phase IIIb–IV study, which enrolled 
4,362 patients with RA aged >50 years who 
had at least one cardiovascular risk factor. 

Oral surveillance and JAK inhibitor 
safety: the theory of relativity
Kevin L. Winthrop and Stanley B. Cohen

Abstract | The published results of the post- marketing ORAL Surveillance study, 
which compared the Janus kinase (JAK) inhibitor tofacitinib with anti- TNF therapy 
in older patients with rheumatoid arthritis who have cardiovascular risk factors, 
have led to changes in the recommendations for the use of JAK inhibitors. Although 
new safety signals have emerged for tofacitinib, namely malignancy and 
cardiovascular disease, it should be noted that these signals are relative to those 
seen with TNF blockers. The new data further raise our intrigue that venous 
thromboembolism might be a true risk related to JAK inhibition. Reassuringly, the 
totality of the findings from this newly published study and the other data collected 
to date suggest that JAK inhibitors can be used safely at approved doses by many 
patients with rheumatoid arthritis.
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inhibitors confer similar risk of infection 
to TNF inhibitors, with the exception of 
their propensity to reactivate latent viruses 
(such as varicella zoster virus, herpes 
simplex virus and cytomegalovirus). 
Unsurprisingly, ORALSURV reported rates 
of varicella zoster virus reactivation (that 
is, herpes zoster) several fold higher than 
for tofacitinib. To date, all JAK inhibitors 
approved in the USA seem to confer similar 
herpes zoster risk based on experience 
from phase II–III trials5, although direct 
comparator data between the different 
JAK inhibitor compounds are lacking. 
Filgotinib, a compound with selectivity for 
JAK1 and approved for use in Europe, had 
a lower herpes zoster incidence in more 
recently conducted phase II–III trials, 
although a dose- dependent elevation was 
observed6. With regard to SIEs, importantly, 
ORALSURV reported a similar risk for the 
tofacitinib 5- mg dose and TNF inhibitors, 
even in patients >65 years old. Although 
incidence rates were slightly higher in those 
>65 years old than in those 50–65 years old, 
there was no effect modification due to age, 
and the hazard ratios comparing tofacitinib 
with TNF inhibitors were similar in older 
and younger individuals. The ORALSURV 
SIE data were reassuring, and consistent with 
data from the RA development programmes 
of currently approved JAK inhibitors and 

bDMARDs, in which SIE rates are similar7 
and generally in the range of 3–4 events 
per 100 patient- years, with elevated rates as 
expected in more elderly individuals.

Venous thromboembolism
ORALSURV’s finding of an increased risk 
of VTE with the tofacitinib 10- mg dose 
relative to TNF inhibition supports the 
idea, first raised in RA clinical trials of 
baricitinib’s 4- mg dose5, that VTE might 
be a true JAK inhibitor- related adverse 
event. Although a biological explanation is 
currently lacking, it is tempting to speculate 
that greater modulation of JAK2, which 
would be observed with higher doses of 
tofacitinib and baricitinib, could offer 
an eventual explanation8. Reassuringly, 
however, JAK inhibitors used in RA at their 
currently approved doses do not yet seem to 
carry excess risk. ORALSURV reported the 
tofacitinib 5- mg dose and TNF inhibitors 
to be associated with a similar risk of VTE, 
and this is consistent with real- world data 
(from the CORRONA registry) indicating 
that patients starting treatment with 
tofacitinib and those starting treatment 
with TNF inhibitors had a similar risk9. 
Furthermore, the incidence rates of VTE 
observed in pivotal trials of tofacitinib and 
upadacitinib were similar (and were even 
lower in filgotinib trials), and the rates 

within the active comparator groups of 
those programmes (that is, methotrexate 
and adalimumab) were similar or in some 
cases even higher6,10,11. Even for baricitinib, 
for which the initial imbalance in VTE 
risk between the 2- mg and 4- mg doses in 
the first 12 weeks of phase III trials raised 
eyebrows, similar long- term incidence 
rates were reported for both doses, of 
0.5 events per 100 patient- years, a rate in 
line with RA population- based studies5,12. 
Lastly, baricitinib 4 mg given for 2 weeks 
did not increase the risk of VTE in the 
treatment of COVID-19, a condition 
with heightened VTE risk at baseline13. 
As the findings of ORALSURV suggest 
that there is a dose- dependent risk with 
tofacitinib relative to TNF inhibitors, until 
more basic and population- based research 
has been conducted with each of these 
compounds it seems at least prudent to 
steer JAK inhibitors away from those with 
a strong risk of VTE, particularly those 
with a history of VTE who are not presently 
anti- coagulated.

Major adverse cardiovascular events
Within ORALSURV, tofacitinib at both 
the 5- mg and the 10- mg twice daily doses 
failed to demonstrate non- inferiority for 
MACEs in comparison with TNF inhibitors, 
as the 95% CI exceeded the pre- specified 

Tofacitinib (5 mg 
twice daily) approved 
for treatment of RA

Tofacitinib (11 mg 
once daily) 
approved for RA

Tofacitinib (5 mg twice 
daily or 11 mg once 
daily) approved for PsA

Baricitinib (2 mg 
once daily) approved 
for treatment of RA

Upadacitinib (15 mg 
once daily) approved 
for treatment of RA

Upadacitinib (15 mg once 
daily) approved for treatment 
of PsA 

Tofacitinib (5 mg twice daily) 
approved for treatment of AS

Upadacitinib (15 mg once 
daily) approved for treatment 
of AS

Upadacitinib (15 mg once 
daily) approved for treatment 
of PsA 

Tofacitinib (5 mg twice daily) 
approved for treatment of AS

2012 2016 2017 2018 2019 2020 2021

Tofacitinib (5 mg twice 
daily in combination 
with MTX) approved for 
treatment of PsA 

Baricitinib (2 mg or 4 mg 
once daily) approved for 
treatment of RA

FDA

EMA

Upadacitinib (15 mg 
once daily) approved 
for treatment of RA

Filgotinib (100 mg or 
200 mg once daily) 
approved for RA

Tofacitinib (5mg twice 
daily in combination 
with MTX) approved for 
treatment of RA

Rheumatoid arthritis

Psoriatic arthritis

Ankylosing spondylitis

Ulcerative colitis

Tofacitinib (5 mg or 10 mg 
twice daily) approved for UC

Tofacitinib (5 mg or 10 mg 
twice daily) approved for UC

Filgotinib (200 mg once daily) 
approved for UC

Fig. 1 | Timeline of approved indications for Janus kinase inhibitors for rheumatic diseases. In 2012 tofacitinib became the first Janus kinase (JAK) 
inhibitor to be indicated for a rheumatic disease, when the FDA approved its use in the treatment of rheumatoid arthritis (RA); EMA approval came in 2017. 
In addition to tofacitinib, other JAK inhibitors (baricitinib, upadacitinib and filgotinib) have also been approved for use in the treatment of RA, and the 
indications for JAK inhibitors have expanded to include psoriatic arthritis (PsA), ankylosing spondylitis (AS) and ulcerative colitis (UC). MTX, 
methotrexate.
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upper boundary of 1.8. The incidence 
rate for the tofacitinib 5- mg dose was 
0.91 per 100 patient- years and for the TNF 
inhibitors it was 0.73 per 100 patient-years 
(HR 1.24; 95% CI 0.81–1.91). Interestingly, 
the MACE incidence rate for TNF 
inhibitors in ORALSURV was markedly 
lower than that seen for etanercept 
(1.70 per 100 patient-years) in a similar 
trial evaluating patients with RA and 
cardiovascular risk factors14. Real- world  
data have established that TNF inhibitors are 
protective with regard to MACEs compared 
with non- biologic DMARDs, and some 
studies suggest that tocilizumab (an IL-6 
receptor inhibitor) or even abatacept 
(a selective co- stimulation modulator) might 
be more protective than TNF inhibitors15. 
The 2022 STAR- RA population- based study, 
evaluating commercial and Medicare data 
on patients with RA initiating treatment 
with tofacitinib or TNF inhibitors, found 
no difference in the incidence rates of 
myocardial infarction and stroke between 
these treatment groups (HR 1.01; 95% CI 
0.83–1.23)16. Of interest, however, when 
the analysis was restricted to patients with 
similar cardiovascular risk factors to those 
of patients enrolled in the ORALSURV 
study, again, no statistical difference in 
cardiovascular outcomes was found, but 
the HR of 1.24 (95% CI 0.90–1.69) for 
tofacitinib compared with TNF inhibitors 
was the same as that reported in the 
ORALSURV for tofacitinib 5- mg twice 
daily, noted above. As for JAK inhibitor 
data from studies prior to ORALSURV, data 
from the RA developmental programme 
for all approved JAK inhibitors suggest 
incidence rates similar to those observed 
for the bDMARD comparators in those 
phase III trials10,13,17.

Malignancy
The overall rate of malignancy for JAK 
inhibitors in RA randomized clinical 
trials and long- term extension studies has 
been reported to be similar to that seen 
with bDMARDs, and lower than that 
observed for tofacitinib in this study. In the 
ORALSURV study, the incidence rate for 
malignancy was 1.13 (95% CI 0.87–1.14) for 
patients treated with tofacitinib 5 mg twice 
daily and 1.13 (95% CI 0.86–1.14) for those 
treated with tofacitinib 10 mg twice daily, 
compared with 0.77 (95% CI 0.55–1.04) for 
the TNF inhibitor- treated patients (HR 1.48; 
95% CI 1.04–2.09). This signal was driven 
by differential rates of several cancers 
(particularly lung cancer and lymphoma) 
primarily seen in the North American strata 
of the study (compared with the rest of the 

world), and among older individuals and 
in those with a history of tobacco smoking. 
An increased risk of non- melanoma skin 
cancer was also noted, which has been noted 
previously with use of the tofacitinib 10- mg 
dose in ulcerative colitis18. Conversely, 
numerically higher rates of melanoma 
(per 100 patient- years) were observed for 
patients using TNF inhibitors (0.09 (95% CI 
0.03–0.21) versus 0.02 (95% CI 0.0–0.10) for 
either tofacitinib dosage. The mechanism 
by which JAK inhibitors could be associated 
with some types of cancer is unknown, 
but we would speculate that some JAK 
inhibitors, depending on their selectivity and 
effect on natural killer cells, could potentially 
diminish the host’s immunosurveillance 
for cancer, making an existing or de novo 
cancer more likely to progress19. In general, 
long- term data from large numbers of 
individuals is required to evaluate these 
long- latency events, and the real world RA 
data evaluated to date suggest no difference 
in cancer risk between patients treated with 
tofacitinib 5 mg or bDMARDs9. The extent 
to which tofacitinib or other JAK inhibitors 
might increase the risk of malignancy within 
specific high- risk groups (for example, 
elderly smokers) deserves further study.

Mortality
For all the approved JAK inhibitors, 
mortality rates have generally been reported 
to be similar to those associated with 
bDMARDs including TNF inhibitors, 
with standard incidence ratios in the 
Surveillance, Epidemiology, and End 
Results (SEER) database of around 1 
with no statistical difference5,6,10,17. In the 
ORALSURV study, there was a statistically 
significant increase in overall mortality for 
the 10- mg dose (HR 2.37; 95% CI 1.34–4.18) 
and non- statistically significant trend for 

the 5- mg dose (HR 1.49; 95% CI 0.81–2.74) 
compared with TNF inhibitor- treated 
patients. These data were reflective of the 
differential rates of MACEs and malignancy 
observed in the trial.

How should we use JAK inhibitors?
In our minds, ORALSURV raises more 
questions than it answers, but it does help 
to inform treatment decision- making 
for physicians and patients, particularly 
if patients are at a high risk of certain 
outcomes. The issues raised by this study are 
reminiscent of the concerns raised about the 
risk of tuberculosis and other opportunistic 
infections with the use of TNF inhibitors, 
which was recognized in post- marketing 
surveillance, or of the association between 
cyclooxygenase 2 (COX2) inhibitors 
and increased cardiovascular risk, which 
resulted in rofecoxib and valdecoxib being 
withdrawn from the market20,21. As with 
ORALSURV, when signals of concern arose 
with TNF inhibitors and COX2 inhibitors 
there was substantial controversy and 
conflicting opinions. Over time, research 
confirmed these signals, and we look 
forward to additional mechanistic and 
clinical research to confirm or refute the 
observations from ORALSURV. What we 
do have to acknowledge is that we clearly 
have a signal of concern in a high- risk 
population and need to grapple with how 
this signal should influence our treatment 
decision- making. We must also acknowledge 
that ORALSURV reflects only a comparison 
of TNF inhibitors relative to JAK inhibitors 
in a specific population of patients with RA, 
and that both treatments might be protective 
against many of the outcomes under study 
if compared with no therapy, non- biologic 
DMARDs, or even other bDMARDs. It all 
boils down to the population under study 

Box 1 | FDA and EMA responses to ORAL Surveillance

The results of the oRal Surveillance study1 have led regulatory authorities such as the FDa and 
ema to recommend different changes to the utilization of Janus kinase inhibitors.

EMA22

•	For patients ≥65 years old, those with a history of smoking and those with risk factors
for cardiovascular disease or malignancy, tofacitinib should be used only if no suitable
alternatives exist

FDA2

•	use of tofacitinib, baricitinib and upadacitinib is recommended for use only in patients who have
had an inadequate response to, or intolerance of, one or more TNF inhibitors

•	Boxed warnings for tofacitinib, baricitinib and upadacitinib updated to include information
about the risks of serious heart- related events, cancer, blood clots and death

•	Health- care professionals should consider the benefits and risks for an individual patient prior 
to initiating or continuing treatment with tofacitinib, baricitinib or upadacitinib, particularly for
patients with a history of smoking, those with risk factors for cardiovascular disease and those 
with a malignancy
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and the referent group, and the fact that RA 
disease control is protective against all of the 
outcomes under study.

What does the clinician do now? 
Regulatory authorities such as the FDA and 
EMA have arrived at different conclusions 
with different modifications of JAK inhibitor 
utilization (Box 1). The EMA recommended 
that for patients ≥65 years old with a history 
of smoking or risk factors for cardiovascular 
disease or malignancy, tofacitinib should be 
used only if no suitable alternatives exist22; 
the FDA extrapolated the ORALSURV data 
beyond tofacitinib to include baricitinib 
and upadacitinib, with use of these agents 
recommended in such patients only in the 
case of prior TNF inhibition failure2. We 
believe that the ORALSURV data highlight 
the already described narrow safety window 
of JAK inhibitors, which was noted in 
the clinical trials, where the higher doses 
of the JAK inhibitors were not approved 
owing to increased toxicity. In general, 
these medicines, like all medicines, should 
be steered towards patients for whom 
the benefit:risk ratio is maximal, and it 
underscores the importance of screening 
patients for various risk factors prior to 
therapy selection. Fortunately, a number 
of highly effective alternatives are available 
for the treatment of rheumatic disease that 
we can utilize for patients at an increased 
risk of certain outcomes. For now, however, 
it seems that JAK inhibitors can be used at 
approved doses with safety similar to that 
of TNF blockade in many patients with 
RA, particularly in younger individuals and 
in older individuals who lack certain risk 
factors (for example, smoking).

Conclusions
Although the FDA’s ‘better to be safe 
than sorry’ approach might ultimately 
prove correct, there is certainly a need 
for studies comparing JAK inhibitor 
compounds, and comparing JAK inhibitors 
with other DMARDs, as well as further 
mechanistic studies to explain the safety 
signals observed in comparison with TNF 
inhibitors to date. How JAK inhibitor 
compounds compare with one another, and 
how they compare with other bDMARDs 

beyond TNF inhibitors, in regard to 
these outcomes is unknown. Although we 
clinicians navigate now perhaps murkier 
waters in the wake of this one study, we 
remind ourselves that we must always 
remember our frame of reference.
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